

SPARQ: A QoS-Aware Framework for Mitigating Cyber Risk in Self-Protecting IoT Systems

Alessandro Palma*, Houssam Hajj Hassan°, Georgios Bouloukakis° Presented by Nikolaos Papadakis°

* Sapienza University of Rome ° SAMOVAR, Télécom SudParis

SEAMS 2025, Ottawa, Canada, April 29th

Self-Protection: Motivation

Act of taking measures to ensure one's own safety and well-being, through strategic actions to *prevent* harm or danger^[Alicke].

Avoid going to the hospital periodically

SAVE TIME

WHY?

Defend against unexpected attacks

DEFEND/PREVENT ATTACKS

Self-Protection in IoT Networks

Wait for human operator

- 1. Analyze cyber risk
- 2. Take mitigation actions

In the meantime, network attacked

Self-protection

 Adapt the network to protect from exploits

Self-protection in IoT network: Issues and Challenges

- drop-off links to protect electrocardiogram
 - not worth interrupting services and leads to patients disappointment for low risk
 - o can be patched by adjusting authorization controls
- drop-off links to protect X-ray machine
 - o worth because vulnerability may cause unreliable measurements
 - o requires long human intervention

Existing self-protecting systems focus on workflow modeling^[Yuan,Li] To make them actionable a valuable solution is Attack Graphs, but it **overlooks the response planning**^[Gonzalez]

Existing solutions for Attack Graph-based self-protection provide valuable proactive/reactive strategies to mitigate security^[Zeller] without considering their **impact on QoS**^[Bonomi]

Self-protection considering both QoS and security is crucial

[Yuan] Yuan, E., Malek, S., Schmerl, B., Garlan, D., Gennari, J.: Architecture-based self- protecting software systems. p. 33–42. QoSA '13, ACM (2013)
[Li] Li, N., Zhang, M., Li, J., Adepu, S., Kang, E., Jin, Z.: A Game-Theoretical Self-Adaptation Framework for Securing Software-Intensive Systems. ACM TAAS (2024)
[Gonzalez] Gonzalez-Granadillo, G., Dubus, S., Motzek, A., Garcia-Alfaro, J., Alvarez, E., Merialdo, M., Papillon, S., Debar, H.: Dynamic risk management response system to handle cyber threats. FGCS (2018)
[Zeller] Zeller, S., Khakpour, N., Weyns, D., & Deogun, D. (2020, June). Self-protection against business logic vulnerabilities. SEAMS (2020)
[Bonomi, S., Cuoci, M., Lenti, S., & Palma, A. (2024). Improving Attack Graph-based Self-Protecting Systems: A Computational Pipeline for Accuracy-Scalability Trade-off. CRiSIS (2024)

SPARQ: A QoS-Aware Framework for Mitigating Cyber Risk

Model both security and QoS to take appropriate protection strategies Automatically plan strategies informed by security and QoS models

SPARQ: Security Model

An Attack Graph represents possible ways an attacker can intrude into the network by exploiting a **series** of vulnerabilities on network hosts based on certain privileges at each step^[Kaynar]

[Kaynar] Kaynar, K. A taxonomy for attack graph generation and usage in network security. *Journal of Information Security and Applications*, 2016. [CVSS] <u>https://www.first.org/cvss/</u>

SPARQ: QoS Model

SPARQ QoS Model

Арр	Торіс	Update Libraries	Change IP	 Use Firewall	Input Validation	Restart device	
app 1	smoke	0.2015	0.560679	0.4761	0.4651	0.498188	
app 1	temp	0.515479	0.13125	0.5193	0.4950	0.131307	
app 3	temp	0.633439	0.5532327	0.4624	0.3168	0.23485	
app j	occupancy	0.134651	0.345628	0.2156	0.5138	0.154152	

Response times per data flow

Арр	Торіс	Update Libraries	Change IP	Use Firewall	Input Validation	Restart device	
app 1	smoke	452.141	262.432	450.14	363.43	479.532	

Throughput per data flow

Арр	Торіс	Update Libraries	Change IP	 Use Firewall	Input Validation	Restart device	
app 1	smoke	0.00	0.008243	0.0014	0.000	0.000	

Drop rate per data flow

¹⁰

A Planning Domain Σ is a state transition system that contains:

- A finite set of states of the system (S)
- A set of actions α to be performed by an agent (e.g., SPARQ)
- A state transition function γ : S x A \rightarrow S
- A cost function C: S x A \rightarrow [0, ∞)

Initial State

- · No mitigation action is applied
- Current security metrics (e.g, average risk, number of attack paths, etc.)

A solution for a planning problem P is a plan π such that $\gamma(s_0, \alpha_1) \dots (s_m, \alpha_{\pi})$ satisfies G.

A Planning Domain Σ is a state transition system that contains:

- A finite set of states of the system (S)
- A set of actions α to be performed by an agent (e.g., SPARQ)
- A state transition function $\gamma :$ S x A \rightarrow S
- A cost function C: S x A \rightarrow [0, ∞)

Initial State

- No mitigation action is applied
- Current security metrics (e.g, average risk, number of attack paths, etc.)

Domain file

Prob

Planning problems are expressed using the Planning Domain Definition Language (PDDL), an action centered language that provides a standard syntax to describe actions by their parameters, preconditions, and effects.

:action update-libraries :parameters (?d -device ?app -application) :precondition (and (not (mitigation-applied ?d))) :effect (and (increase (avg_risk) 0.720) (decrease (avg_len) 1.889) (increase (avg_latency) 0.487)

(mitigation-applied ?app))

	(:objects device1 device2device app1 app2 app3 app4application)
	(:init
	(not (mitigation-applied app1)) (= (avg_risk) 0) (= (avg_len) 0)
lem file	 (= (avg_latency) 0) (:goal (and (mitigation-applied app1)) (:metric minimize (+ (+ (+ (* 1 (avg_risk))) (* 1 (avg_len))) (* 1 (avg_latency)))

Mitigation adaptation	QoS effects	Category	
Update software libraries	Increased delay	Security	
Avoid dynamic refactoring	Human intervention	Security	
Double-Check the used	Human intervention	Socurity	
programming language	Human Intervention	Security	
Check compilers correctness	Human intervention	Security	
Environmental variables	Human intervention	Security	
hardening	Human Intervention	Security	
Isolate code running from	Human intervention	Security	
other processes	Human Intervention	Security	
Separate code and data and	Human intervention	Security	
limit their interaction	Human Intervention	Security	
Separation of privilege: only necessary	Reduced message size +	Security	
messages to necessary destinations	Reachability adaptation		
Specify output encoding in messages	N/A	Security	
Input validation	Increased delay	Security	
Quarantining system files of a device	N/A	Security	
Use an application firewall	Reachability adaptation	Architectural	
Traffic redirection	Reachability adaptation	Architectural	
Attack surface reduction:	Passhability adaptation	Architectural	
block untrusted sources	Reachability adaptation	Architecturar	
Limit resource utilization	Reduced message rate	Architectural	
Change IP address	Reachability adaptation	Architectural	
Pastart a device	Increased delay +	Architectural	
Restart a device	Shutdown period		
Packet dropping: drop all the packets	Reduced message rate +	Architectural	
to vulnerable destination	Reachability adaptation	Architectural	
Disconnect the device from the Internet	Reachability adaptation	Architectural	
Terminate one or more services in a device	Reduced message rate +	Architectural	
	Shutdown period		
Block one or more ports of a device	Reduced message rate	Architectural	
Terminate all services in a device	Shutdown period	Architectural	

Security strategies from security standards^[CWE]

Architectural strategies modify infrastructure

- Most of the strategies can be immediately executed
 - QoS can be simulated
- ... some require human intervention

[CWE] https://cwe.mitre.org/

Evaluation

2 IoT networks:

- Healthcare network (13 devices, 216 vulnerabilities)
- Smart home network (20 devices, 512 vulnerabilities)

Human intervention simulated with 3 strategies:

- 1. retain risk
- 2. patch all device vulnerabilities
- 3. patch a single vulnerability

Comparison with:

- No adaptation
- Only security adaptations
- Onlý architectural adaptations

Implementation details:

- Security model in Python^[Palma]
- QoS model in JMT^[JMT]
- Metric-FF for PDDL planner^[MetricFF]

Research Questions (RQ):

- 1. To what extent is considering both architectural and security adaptations beneficial for **security**?
- 2. To what extent is considering both architectural and security adaptations beneficial for **QoS**?
- 3. What is the security-QoS trade-off?

[Palma] Palma, A., & Angelini, M. It is Time To Steer: A Scalable Framework for Analysis-Driven Attack Graph Generation. ESORICS 2024 [JMT] https://jmt.sourceforge.net/ [MetricFF] https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html

Evaluation: Smart Home Setting

- SPARQ identifies the architectural adaptations in the **most risky situations**
- SPARQ correctly identify adaptations worth applying or not
 - if the cyber risk is low it may not be worth changing the network infrastructure
- Avg latency of **0.27** seconds in the smart home network (acceptable wrt QoS)

Evaluation: Healthcare Setting

- Similar observations of Smart Home settings, but more risky devices
- In very risky scenarios (Healthcare), behaviour comparable to ideal conditions
 - SPARQ does not sacrifice QoS in critical infrastructures
- Avg latency of **0.26** seconds (acceptable wrt QoS)

Evaluation: QoS-aware Mitigation Planning (RQ3)

TP: correct strategies from CWE FP: strategies not expected by CWE FN: strategies expected by CWE TN: strategies not in SPARQ nor in CWE

- Existing solutions that apply only architectural adaptations degrade the performance of the QoS due to the **drastic actions** that are put in place even when not necessary
- Applying only security adaptations provides very specific mitigation actions, but disregards QoS and the possibility of employing them autonomously
 - SPARQ balances security and QoS for mitigation plans
 - in terms of QoS it outperforms existing solutions
 - in terms of security it shows an avg 0.85 accuracy

SPARQ as a framework for self-protection integrating **QoS scenarios** beyond security

Security modeled through Attack Graphs, QoS modeled through Queueing Networks

Results show good trade-off of security and QoS, identifying suitable mitigation actions

Future Works

- Investigate the impact of human actions in SPARQ
 - Extend SPARQ as a human-in-loop system
- Enhance context-awareness with additional environment parameters

SPARQ: A QoS-Aware Framework for Mitigating Cyber Risk in Self-Protecting IoT Systems Presented by Nikolaos Papadakis

Alessandro Palma Sapienza University of Rome palma @diag.uniroma1.it

Prototype and all materials available:

Houssam Hajj Hassan Télécom SudParis houssam.hajj_hassan @telecom-sudparis.eu Georgios Bouloukakis Télécom SudParis georgios.bouloukakis @telecom-sudparis.eu

