DEMSA: a DT-enabled Middleware for Self-adaptive Smart Spaces

Jun Ma, Georgios Bouloukakis, Ajay Kattepur, Roberto Yus, Denis Conan

1st International Workshop on Middleware for Digital Twins (Midd4DT)

12 December, 2023

Climate change

 The global average temperature in 2020 is 1.2 degrees warmer than in preindustrial times.

Energy consumption in Buildings

This work focuses on saving energy when using Heating, Ventilation, and Air Conditioning (HVAC) systems

Background: HVAC System

Variable Air Volume (VAV) System

Measuring Thermal comfort

How to measure it?

By extracting skin temperature By using body shape information By the environment (temperature, humidity, sunshine...) Let people speak

ASHRAE, the American professional association, proposes a widely-used 7-point thermal sensation scale

Case Study: Thermal Comfort Provision for Diverse Occupants

Case Study: Thermal Comfort Provision for Diverse Occupants

They can send their feedback using smart devices

Using Feedback to Control Building

Motivation: the Drahi-X smart building of IP Paris

The Drahi-X of IP Paris:

- 5000 m² of surface
- 12 electric zones and two floors.
- IoT devices: temperature sensors, motion detectors, smart plugs, HVAC systems
- Tablets in corridors of the building for occupant to provide feedback
- Existing BMS controls the HVAC and IoT devices
- Potential for occupant well-being and energy efficiency
 - Certain schedules of activities
 - Feedback to regulate HVAC
 - Different strategies for regulation over time

Exploit smart devices space knowledge to design an optimal *Thermal Comfort Provision System* in terms of comfort and energy consumption ?

1. Diversity:

- literature focuses on overall comfort of individuals
- individuals have diverse preferences
- challenging to provide comfort in shared spaces

People's preferences \rightarrow many factors age, fitness, their personality and their mood^[1].

- 1. Diversity:
 - literature focuses on overall comfort of individuals
 - individuals have diverse preferences
 - challenging to provide comfort in shared spaces
- 2. Dynamicity:
 - buildings scenarios are dynamic

changes \rightarrow temperature, occupant comfort and energy consumption will be affected?

- 1. Diversity:
 - literature focuses on overall comfort of individuals
 - individuals have diverse preferences
 - challenging to provide comfort in shared spaces
- 2. Dynamicity:
 - buildings scenarios are dynamic
- 3. Adaptivity:
 - different strategies
 - challenging to select the optimal strategy

- warm preference is common
- setting colder temperature for fairness is not ideal
- forces the majority to compromise for the sake of equal treatment

- 1. Diversity:
 - literature focuses on overall comfort of individuals
 - individuals have diverse preferences
 - challenging to provide comfort in shared spaces
- 2. Dynamicity:
 - buildings scenarios are dynamic
- 3. Adaptivity:
 - different strategies
 - challenging to select the optimal strategy

How to design a Thermal Comfort Provision system?

- warm preference is common
- setting colder temperature for fairness is not ideal
- forces the majority to compromise for the sake of equal treatment

Proposed solution: DEMSA

DT-enabled Middleware for Self-adaptive Smart Spaces

Real physical environment:

- Real-time monitoring (through IoT devices)
- Smart energy management (e.g., HVAC)

Automated Planning for:

- Semantically representing DT
- Temporal plans with strategies for HVAC regulation

Digital Twin, digital replica of:

- Building's architecture
- Devices, Systems, etc.
- Inhabitants

Middleware for:

- Synchronizing DT co-simulations
- Self-adaptation based on AI temporal plans and building conditions

How to evaluate DEMSA?

DEMSA Evaluation Metrics

- 1. Energy Consumption (EC) :
 - amount of energy consumed in the building
- 2. Thermal Comfort (TC) :
 - #people feel comfortable based on feedback
- 3. Equality (EQ):
 - equality level -- if individuals treated fairly

DEMSA -- Smart Buildings' Edge Infrastructure

Predefined strategies:

Majority – satisfies the majority's feedback for the overall thermal comfort

Drift ^[1] – aims to preserve energy by ensuring the environment is always between very comfortable and uncomfortable.

Fairness ^[2] – maintains fairness among the inhabitants.

12/12/2023

^[1] Sean Purdon et al. 2013. Model-free HVAC control using occupant feedback. In LCN Workshops

^[2] Eun-Jeong Shin et al. 2017. Exploring fairness in participatory thermal comfort control in smart buildings. In ACM BuildSys

DEMSA -- DT for IoT-enhanced Spaces

- Prediction of EC, TC EQ
- What-if-analysis –
 e.g., feedback from 70%

DEMSA – Al planner

- Domain model:
- Representation of Building: objects, actions, conditions, goals
- Same domain may be paired with multiple problem instances Problem Model
- Ground problem instantiated based on specific goals and metrics

Al Planner Domain Model Problem Model Planning Algorithm

12/12/2023

- Systematically explores combinations of actions for (near)-optimal sequences
 - \circ transform the initial state into the goal state

DEMSA -- Self-adaptive Buildings using Automated Planning

DEMSA for Self-adaptive Smart Buildings

Current Status of DEMSA and Future Work

In the future we plan to:

- Digitize the occupants and devices in Drahi-X building
- Develop an automated simulation generator for Digital Twins
- Implement the AI Planner 3.
- Evaluate and improve the performance of the system

- Implemented the DT component using small office building (The Office) ^[1]
- Created the 3D model of Drahi-X using IFC models

Conclusion

DEMSA middleware for enabling:

- > Thermal Comfort Provision system for regulating temperature using diverse strategies.
- > A DT system for enabling "what if analysis" via a co-simulation module
- > Temporal scheduling of Edge infrastructures for balancing comfort and energy consumption
- > The DEMSA middleware for self-adaptive Edge infrastructures using people and spaces' feedback.

Thank You! Questions?

Energy for Climate Interdisciplinary Center https://www.e4c.ip-paris.fr

Di Hydro EU project

Research Group at Télécom SudParis

https://satrai.telecom-sudparis.eu

