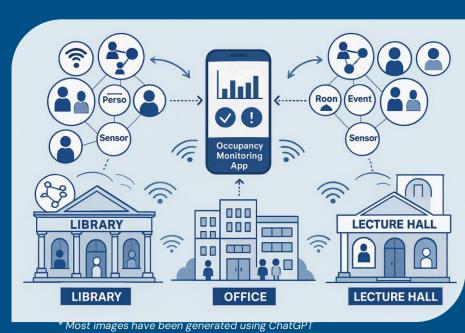
Modeling Inhabited Smart **Spaces to Support** Interoperable IoT-Based

Applications
Roberto Yus (UMBC)


Nada Lahjouji (UC Irvine)

Georgios Bouloukakis (UPatras)

Sharad Mehrotra (UC Irvine)

Nalini Venkatasubramanian (UC Irvine)

MDM 2025

Why Smart Spaces Matter

Smart spaces improve comfort, efficiency, and safety — by making environments aware of and responsive to people.

Energy-efficient workplaces

Responsive learning environments

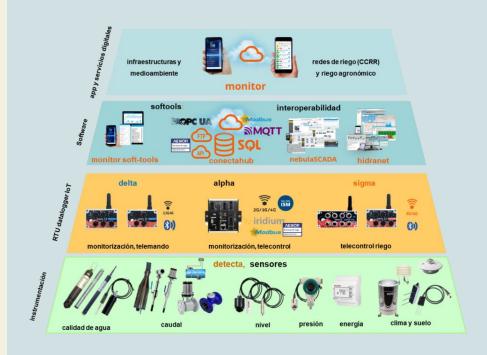
Real-time healthcare support

Comfortable, adaptive living

Data-driven retail experiences

Typical IoT App Development

1. Start from a Specific Deployment


- E.g., "Developing an occupancy app for Building A (e.g., an office)"
- Uses particular sensors (e.g., WiFi APs, motion detectors)

1. Hardcoded Logic and Data Access

- Floor plans and room names are manually embedded in code.
- Sensor IDs / mappings are hardwired.
- Activity definitions (e.g., meeting = conference room + schedule) are custom.

1. App Works Only in That Space

- Cannot reuse in a different building (e.g., a classroom or shopping mall).
- Logic /infrastructure assumptions tied to one space.

Typical IoT Ann Develo

1. Start from a Spe

- E.g., "Develor Building A (e.
- Uses particula detectors)

1. Hardcoded Logi

- Floor plans at embedded in
- Sensor IDs / i
- Activity definition
 room + sched

1. App Works Only

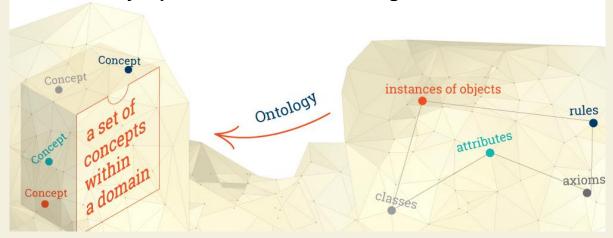
- Cannot reuse classroom or
- Logic /infrastr space.

Limited Reusability

High Redundancy

Poor Maintainability

Lack of Interoperability


Difficult to Scale

Ontologies for Modeling Semantic Knowledge

Ontology: Knowledge structure that formally represents domain knowledge

- Classes/Concepts
- Instances (Objects)
- Properties/Attributes(Relationships)

Related Works and Challenges

- Existing Ontologies in Smart Spaces
 - SSN & SOSA
 - Focus on sensor, observation, and actuator descriptions
 - SAREF & SAREF4Building
 - Smart device roles and commercial building topologies.
 - Brick Schema
 - Sensor infrastructures in buildings (HVAC, lighting).
 - BOT
 - Spatial relationships (containment, adjacency) in lightweight fashion.

- Gaps and Limitations
 - Existing vocabularies are:
 - Primarily system- and devicecentric, not inhabitant-centric.
 - Lack integration of spatialtemporal uncertainty (e.g., probabilistic locations).
 - Provide limited support for recurring activities and spatial hierarchies across domains.
- Challenge: Semantic Interoperability
 Across Spaces

Why Model Inhabited Smart Spaces?

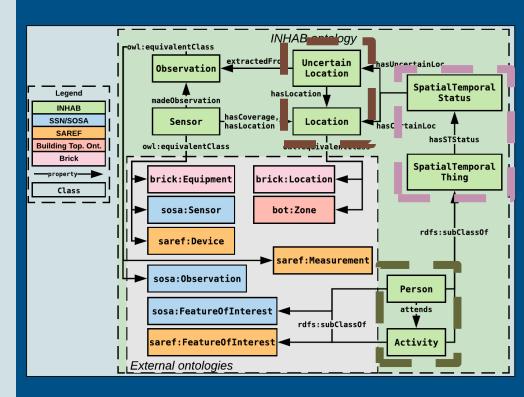
Smart Spaces Are People-Centric

- loT-enabled environments (e.g., campuses, offices, homes) aim to enhance human experience.
- Applications include personalized HVAC control, occupancy-based regulation compliance, and activity tracking.
- Human presence and behavior must be central to smart space modeling

Our goal:

 Develop a schema that enables semantic modeling of inhabited smart spaces (i.e., people, activities, spatial hierarchies, and uncertain sensor data).

• Support the development of interoperable, space-agnostic IoT-based applications.

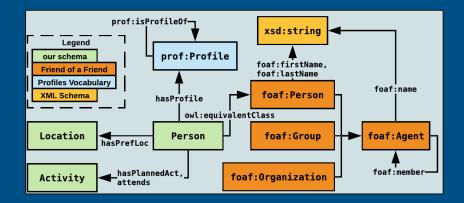

The INHAB Schema Overview

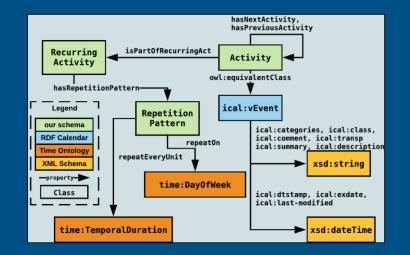
Key Features

- Integrates existing ontologies (e.g., SSN/SOSA, SAREF, Brick, BOT).
- Models people, activities, spatial hierarchies, and uncertainty in sensor data.

Three Core Modules

- People & Activities
- Location & Topology
- Spatial-Temporal Representation


People & Activities Module


• People Representation

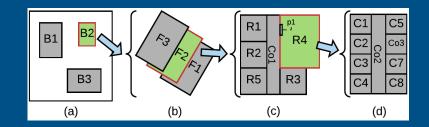
- Uses FOAF, DX-Prof for profiles (e.g., faculty, staff).
- Links to locations (e.g., office) and scheduled activities.

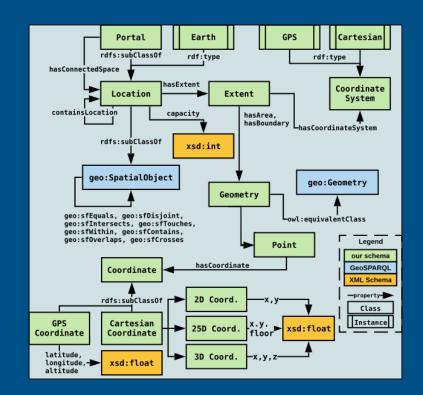
• Activity Representation

- Uses RDFcal and OWL-time for metadata (name, time, recurrence).
- Supports recurring activities for optimizing building operations.

Location Modeling

Spatial Hierarchy


 Buildings → Floors → Rooms → Subspaces (e.g., cubicles).


• Topological Relationships

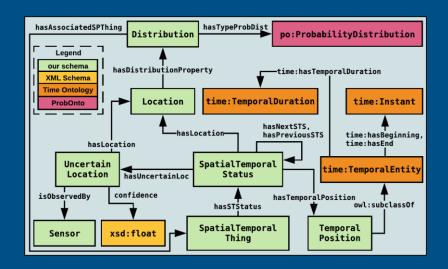
 Explicit definitions: containment, adjacency, intersection.

Coordinate Systems

- Supports both GPS and Cartesian systems.
- Allows definition of areas and boundaries using extensible geometry.

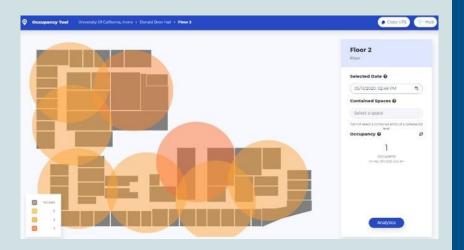
Spatial-Temporal Representation

• Temporal Localization


 People and activities linked to timebound locations.

Handling Uncertainty

- inhab:UncertainLocation class includes confidence levels.
- Allows probabilistic modeling via distributions (e.g., uniform).


Coordinate Systems

- Supports both GPS and Cartesian systems.
- Allows definition of areas and boundaries using extensible geometry.

Usage via SPARQL Queries

Occupancy monitoring

Count number of people per building, floor, region, etc.

Retrieve people and their spatial-temporal location

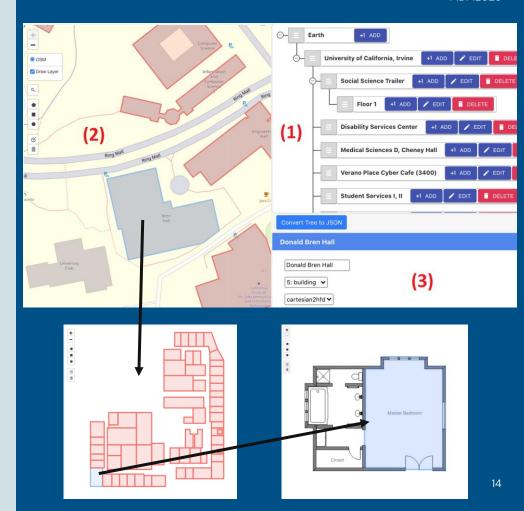
For those on the smart space (last 10 minutes)

Count them, taking into account an "uncertain location" (i.e., they are on campus, they are in the building, they *might* be in a floor or another)

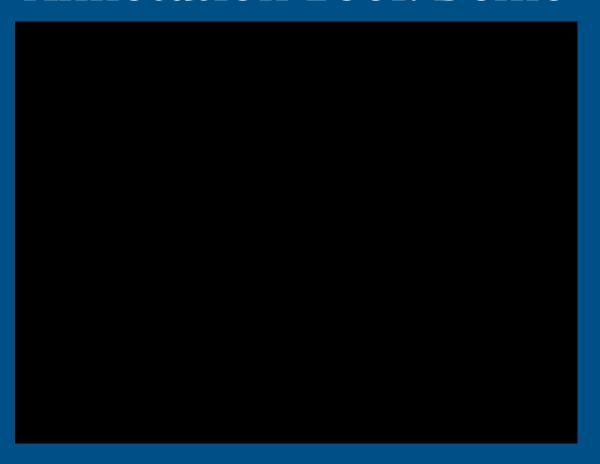
Count them, taking into account a "certain location" (i.e., they are on campus, they are in the building, they are in this floor X)

Annotation Tool

Purpose


GUI for modeling spaces using INHAB schema.

Components


- Hierarchy Definition
- Extent Drawing (map or floor plan)
- Metadata Entry

Advantages

- Reduces annotation errors and complexity
- Helps visualize spatial extent

Annotation Tool: Demo

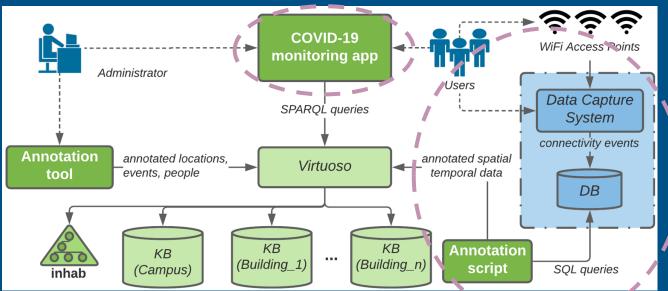
Developing Inhab-Enabled Systems

UC Irvine campus

154 annotated buildings

Detailed spatial hierarchy for selected buildings (e.g., DBH → 360 rooms / 6 floors)

Containment relationships for over 350 WiFi AP coverage areas.



UCI-KB -> includes people and high-level spatial structure.

DBH-KB, FRH-KB, etc. -> detailed space layouts and temporal event data per building

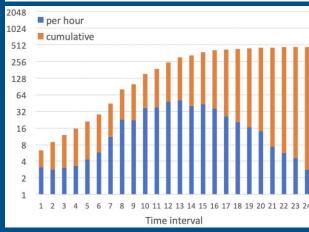
Converts WiFi connectivity logs into RDF triples describing spatial-temporal events

Syslog records (device MAC address, timestamp, and WiFi AP ID).

Models uncertain location using inhab: UncertainLocation

with confidence values based on AP coverage.

Size of KB


- Two one-week data snapshots—pre and post campus partial closure due to COVID-19 (early and late March 2020, respectively).
- ≈ 800 triples to annotate a building
- ≈ 2M pre-closure and ≈ 600K during closure triples required to represent "people"
- spatial-temporal triples per building proportional to its size and inhabitants (e.g., ≈ 5M for DBH)

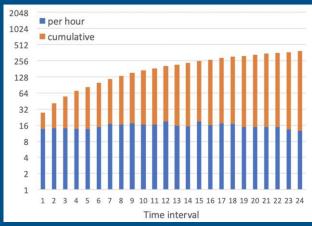
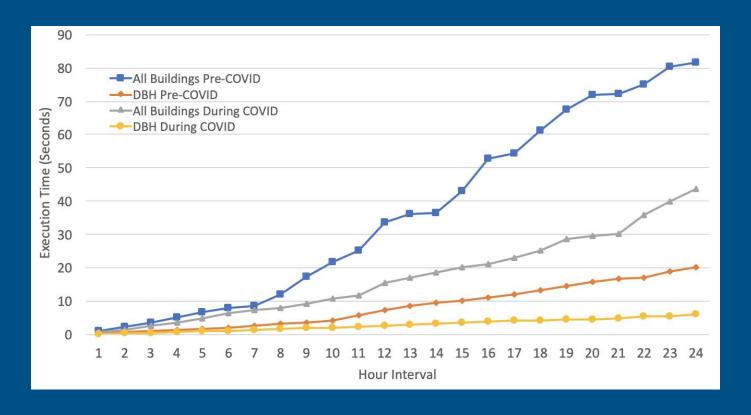

UCI-KB	DBH-KB	ICS-KB	ICS2-KB	FRH-KB
379	8,731	124	193	289
_	21	0	0	105
2,255,778	-	-	-	-
584,052	-	-	-	-
_	5,192,778	1,013,339	713,543	2,796,318
_	2,487,957	283,925	69,809	949,746
135,609	7,689,466	1,297,388	783,545	3,746,353
	379 - 2,255,778 584,052 - -	379 8,731 - 21 2,255,778 - 584,052 - - 5,192,778 - 2,487,957	379 8,731 124 - 21 0 2,255,778 584,052 - 5,192,778 1,013,339 - 2,487,957 283,925	379 8,731 124 193 - 21 0 0 2,255,778 - - - 584,052 - - - - 5,192,778 1,013,339 713,543 - 2,487,957 283,925 69,809

TABLE I: Triples per KB. pre-campus closure[†], during closure[§].

Size vs. Time



Query Performance

Discussion and Future Direction

- INHAB schema enables interoperable, inhabitant-aware applications.
- Aligns with existing ontologies, supports uncertainty and spatial-temporal reasoning.
- Limitation: More fine-grained representation, more size, slower queries
 - Common tradeoff in KGs/ontologies to achieve interoperability
 - Mitigations: Storing only current triples (e.g., last day) in the operational KG, use efficient RDF/KG DBs
- Future Work: Enhancing annotation tool and optimizing knowledge graph storage.

Thank you! Questions?