Toward Enabling Convenient Urban Transit through Mobile Crowdsensing

Garvita Bajaj¹, **Georgios Bouloukakis**², Animesh Pathak², Pushpendra Singh¹, Nikolaos Georgantas², Valérie Issarny²

¹ Indraprastha Institute of Information Technology, New Delhi, India (IIID)
 ² Team MiMove, Inria Paris-Rocquencourt, France

ITSC 2015, Gran Canaria, 15/09/15

Need a convenience model for Metro transit nodes

Inría

Modeling the user's convenience

• A function of:

Seat availability

Representing the Metro network

- Stations as vertices of graph
- Connecting lines as edges
- Edges may belong to different lines
- Lines may be connected at junction stations
- Path P_(o,d)= {L₁,L₂,...L_n} where each leg is the sequence of vertices lying on the same line

Time Inconvenience

Congestion & Seating Inconvenience

- Congestion:
 - personal reaction bubble¹

O Intimate space		
O Personal space		
O Social space		
O Public space		
8		
A	ž 🛔	
(L I	3
		C by Lizzy Design

- Seating (I_s):
 - (if any) must be reported directly by the users
- Overall inconvenience (I):

$$I = aI_t + bI_c + cI_s + \eta$$

$$I_c = \sum_{l \in L} \int_{T_l}^{T_l^s} (A_c - N_c) dt$$

Middleware for Mobile Crowdsensing into the Metro

- A middleware for:
 - collect ground truth data required for identifying the constants *a,b,c* and *η* of the convenience model
 - 2. *p*rovide a list of public transit modes that best meet the user specifications
 - 3. collect and provide information through mobile applications
- Efficient interaction by considering three basic constraints:
 - Connectivity
 - Energy efficiency
 - Timeliness (Freshness) of data

Basic Interaction Paradigms

Client-Server - CS (e.g., REST)

Inría

Publish/Subscribe - *PS* (e.g., MQTT)

Mobile System Architecture

Android Application - Metro Cognition¹

- currently acts as a sender
- collects values for constants *a,b,c* and *η* of the convenience model
- collects connectivity tuples every 30 seconds using a background service
- the GoFlow² pub/sub middleware is used for the submission of data

¹ https://play.google.com/apps/testing/edu.sarathi.metroCognition ² https://goflow.ambientic.mobi/

Early Experiments – Convenience Analysis (1)

- Similar experiments into the Metro of Paris and Delhi
 - 24 users participated (12 from each city)
- Two goals:
 - Identifying parameter values (a,b,c and η) for a city-wide convenience model
 - Identifying technique with best accuracy over the collected dataset
- Dataset was heterogeneous one legged, two legged, and three legged journeys:
 - Preprocessing to separate out similar paths

	One Leg	Two Legs	Three Legs	Total
Paris	52	37	15	104
Delhi	7	38	53	98

Early Experiments – Convenience Analysis (2)

Techniques used:

- o Decision trees (DT)
- Multiclass Linear
 Regression
- Support VectorMachines (SVM)
- o Neural Networks (NN)

Results:

Method	Average Accuracy	
Decision Trees	<75%	
Multiclass Linear Regression	~75-80%	
SVM	Overfitted accuracies reported	
Neural Networks	~79-98%	

Early Experiments – Connectivity Analysis (1)

- Experimental setup:
 - analyzing the user's connectivity pattern (internet connection)
 - each connectivity pattern consists of many tuples for a specific path
 - 2 business districts: La Défense (Paris) and Rajiv Chowk (Delhi)
 - 2 residential districts: Cité Universitaire (Paris) and Govin-dpuri (Delhi)
 - route in Paris: Cité Universitaire → La Défense, and back
 - route in Delhi: Govindpuri \rightarrow Rajiv Chowk, and back
 - routes are classified to 3 categories: Morning, Mid-day, Evening

Early Experiments – Connectivity Analysis (2)

	Morning	Midday	Evening
Cité Universitaire - La Défense	51%	81%	83.5%
Govind Puri - Rajiv Chowk	59%	88%	76%
La Défense - Cité Universitaire	78%	81%	44%
Rajiv Chowk - Govind Puri	82%	79%	51%

Conclusion and future perspective

- Enabling convenient urban transit through Mobile Crowdsensing
 - Introduce our inconvenient model and middleware platform
- We develop convenience models for Delhi and Paris using machine learning techniques
- We identify the ideal interaction paradigm regarding the constraints into the Metro
- Next step
 - use the developed convenience models to provide personalized mobility services
 - utilizing connectivity patterns as a realistic input-parameter to our queueing network

Further information:

Inria MiMove: https://mimove.inria.fr SARATHI: https://mimove.inria.fr/sarathi XSB: http://xsb.inria.fr

