

Enabling IoT-enhanced Data Models for Context*aware Hydropower Plants*

Nikolaos Papadakis, Georgios Bouloukakis, Kostas Magoutis

The 14th International Conference on the Internet of Things

22th November 2024 Oulu, Finland

Source: https://www.routledge.com/blog/article/what-is-sustainable-energy-and-why-do-we-need-it

Enabling IoT-enhanced Data Models for Context-aware Hydropower Plants

Hydropower: Renewable Energy's Silent Giant

Electricity Generation					
8 440 TWh					
Renewables in 2022					
29.1% 7.2%					
Renewables YoY Growth					
11.7% 18.2%					
Variable YoY Growth					
Renewables					
Hydro 4 330 TWh					
☆ Wind 2098 TWh					
🔆 Solar 🛛 1 294 TWh					
💋 Bioenergy 619 TWh					
😂 Geothermal 🧧 TWh					
🕰 Marine 🛛 1 TWh					

IRENA (2024), Renewable energy statistics 2024, International Renewable Energy Agency, Abu Dhabi.

Hydropower: Flowing Waters, Flowing Energy

IoT2024

Hydropower, or hydroelectric power, is a renewable source of energy that generates power by using a dam or diversion structure to alter the natural flow of a river or other body of water.

Monitoring and

Automation

Predictive Maintenance Reducing Environmental Impact Enabling IoT-enhanced Data Models for Context-aware Hydropower Plants

The Di-Hydro Project: Digital maintenance for sustainable and flexible operation of HYDROpower plants

Di-Hydro

Di-Hydro, an EU-funded project, is focused on advancing hydropower plants to align with the European Green Deal and the Paris Agreement. Its goal is to revolutionize plant operations by making them smarter, more efficient, and environmentally friendly

IoT2024

TELECOM SudParis

「「「「「「「」」」

EORTH

This project has received funding from the European Union's Horizon Europe Research and Innovation Programme under grant agreement N° 101122311

Wangchuk et al. 2024

-

https://smartdatamodels.org/

Booshehri et al. 2021, Kofler et al. 2012

Data Modeling Issues and Needs

IoT2024

Common functionalities and components of energy management systems

Concepts of specific Hydropower Plant components and applications

No Industry "Standard" Data model exists here!

Context Data we would like to have represented

Penstock valve

Guide vane link rods

Pipes with potential biofouling

Data Modeling: Importance of Context

Perfect, we can use this on our Plant

IoT2024

Context Ambiguity!

Country	"Small-scale hydro" hydropower plant		
	capacity (MW)		
Brazil	≤ 30		
Canada	< 50		
China	≤ 50		
European Union	≤ 20		
India	≤ 25		
Norway	≤ 10		
Sweden	≤ 1.5		
United States	5-100		

The *Di-Hydro* NGSI-LD Smart Data Models

While also enabling strong context aware queries without contextual data ambiguity.

25

26

"measurementType": "waterFlow",

"context": "https://raw.githubusercontent.com/satrai-lab/dihydro-data-models/main/context.jsonld"}

Modeled and deployed real Smart Hydropower Plant Data

Example "Anonymized" Version of Subset of technical description of Hydropower Plant data

IoT2024

	HPP A	HPP B	HPP C
Installed Capacity	160MW	380MW	310MW
Turbine type	Francis	Kaplan	Pelton
Num. of Turbines	2x80MW	4x95MW	3x103MW
Yearly production	340GWh	460GWh	250GWh
Net Head	105m	152m	85m
Dam Type	Rockfill	Rockfill	Arch Dam
Dam Volume	8.3m.c.m.	13.1m.c.m.	8.8m.c.m.
Dam Height	128m	168m	92m
Dam Length	550m	490m	570m
Reservoir Volume	408m.c.m.	683m.c.m.	712m.c.m.
Reservoir Useful Volume	315m.c.m.	570m.c.m.	299m.c.m.
Avg Yearly Water Intake	1027m.c.m	962m.c.m	1467m.c.m
Reservoir Min Op Lvl	367m	322m	101m
Reservoir Max Op Lvl	397.5m	378m	122m
Reservoir Max lvl	401m	384.8m	127m

Multi sensor module and crack growth meter

Enabling IoT-enhanced Data Models for Context-aware Hydropower Plants

"Validation", examples of enabled Queries

TELECOM SudParis FORTH OF Di-Hydr

NGSI LD

Query: Get Real-Time and Historical Water Flow Rate Measurements for a Specific Penstock. Filtering by Date Range:

IoT2024

curl -X GET 'serveraddr/ngsi-ld/v1/entities/urn:ngsi-ld: Penstock:001?attrs=observations'

curl -X GET 'serveraddr/ngsi-ld/v1/entities/?type= Observation&id=urn:ngsi-ld:Observation:WaterFlow:001, urn:ngsi-ld:Observation:WaterFlow:002&attrs= measurement.waterFlowRate&options=temporalValues& timerel=between&time=2024-07-01T00:00:00Z&endTime =2024-07-31T23:59:59Z' Query: Find all turbines and their efficiency metrics within a specific powerhouse' showing which governors control them:

curl -X GET 'serveraddr/ngsi-ld/v1/entities/?type=Turbine&q =isPartOfPowerHouse==urn:ngsi-ld:PowerHouse:001&attrs= efficiency,controlledByGovernor'

Query: Retrieve all dams and their properties within a specific hydropower plant:

curl -X GET 'serveraddr/ngsi-ld/v1/entities/?type=Dam&q= isPartOfHydroPowerPlant==urn:ngsi-ld:HPP:001'

22 Nov 2024

Enabling IoT-enhanced Data Models for Context-aware Hydropower Plants

Thank you all for Listening! Let's Stay in Touch

IoT2024

@DiHydro_project

Di-Hydro Project -Digital optimisation for hydropower plants

Check out our Lab and more of our works !

Nikolaos Papadakis PhD Student Télécom SudParis / IP Paris

Feel free to contact me at: nikolaos.papadakis@telecom-sudparis.eu