
Abstracting Interactions with IoT Devices 
Towards a Semantic Vision of Smart 

Spaces

Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, Nalini Venkatasubramanian 
University of California, Irvine 

ACM BuildSys, 2019



IoT Application Development

People’s 
world

Device’s 
world

-Constrained to specific devices/protocols
-Difficult to port to other IoT spaces

-Developer needs to understand the devices 
in the IoT space which makes development 

challenging



IoT Application Development

App request:
➢ “Decrease temperature of rooms with 

occupancy above 50% of their capacity.”

User/Space policy:
➢ “Do not capture the location of John and 

Mary when they are in their offices.”

People’s 
world

Device’s 
world



Challenge: Semantic Gap

App request:
➢ “Decrease temperature of rooms with 

occupancy above 50% of their capacity.”

User/Space policy:
➢ “Do not capture the location of John and 

Mary when they are in their offices.”

SEMANTIC GAP

Which sensors/actuators can we use to answer such 
request/policy?

People’s 
world

Device’s 
world



Challenge: IoT Heterogeinity

SEMANTIC GAP

Device’s 
world

…

https://www.postscapes.com/iot-thermostats/

Dozens of devices in the market!

Different interaction paradigms 
and communication protocols

https://iotbyhvm.ooo/what-is-coap-protocol/



SemIoTic: End-to-End IoT Framework

App request:
➢ “Decrease temperature of 

rooms with occupancy above 
50% of their capacity.”

S
e

m
Io

T
ic

1) Translate people’s world request 
into device’s world request

2) Communicate with specific 
devices using their protocols

People’s 
world

Device’s 
world



Architecture

Extensible metamodel

to define IoT smart 
spaces



Modeling IoT Spaces

● Defining IoT spaces using an ontology provides flexibility and extensibility.
○ In addition, semantic reasoning to infer non-explicitly defined information (e.g., if occupancy is a property 

of rooms, it should be also of meeting room 2065).
● Created OWL meta ontology (semic) extending the popular sensor ontology (SSN/SOSA)

○ Focus on representing the connection between “people’s world” and “device’s world”.
■ Properties of people/spaces (e.g., location, occupancy, temperature) connected to 

sensors/actuators based on expected value types and produced value types.



Architecture

Based on domain 

model applications 

pose actions (i.e., 

requests, commands, 
or policies)



Defining User Actions

● User Actions (UA), expressed at the semantic-level: 
○ Requests for data (UR)
○ Commands (UC)
○ Policies (UP)

● Language for definition of general UAs with following elements:
○ Entities of interest (E) → Set of entities ei , either entity classes ⟨ei ,rdfs:subClassOf,semic:Entity⟩ or entity 

instances ⟨ei ,rdf:type,semic:Entity⟩
○ Properties of interest (P) → Set of properties pi ⟨pi , rdf:type,semic:Property⟩.
○ Conditions (C) → expression containing properties that has to be satisfied to perform the actions on the 

entities
○ (For UP) Interaction to control (i.e., capture,store, share) and preferred action (i.e., accept or deny).

UR “retrieve the current location of John and Mary” ⟨<Mary, John>, Location⟩

UC “decrease temp. of rooms with occ. above 50% of their capacity” ⟨Room, ControlTemp, Occupancy>0.5xCapacity⟩

UP “do not capture Mary’s and John’s location in private spaces when 
the occupancy is less than 2 people”

⟨<Mary, John>, Location subClassOf PrivateSpace, Location.Occupancy<2, 
capture, deny⟩



Architecture

User Actions get 

translated into Device-
level Actions



Translating User Actions

● Goal:
○ Create a plan involving IoT devices to process a UA.

● Ontology-based translation algorithm that can process policies as well as 
requests/commands defined at a higher-level.

Plans can be infeasible 
if sensors are not 

available (e.g., due to 
privacy policies)

Selection based on 
metrics (e.g., 

economical cost, 
latency, reliability)

User Action Translation

1) Flattening
2) Plan Generation
3) Realizability Checking
4) Feasibility Checking
5) Plan Selection

UA



Architecture
Device-Actions get 

implemented on 

sensors/actuators based on 

their features (e.g., 
communication protocol).



Device Action Handling

Consumer
Connector

CoAP
Connector

WebSocket
Connector

MQTT
Connector

Wrapper
Handler

Response
Builder

CoAP

WRAPPER

Request 
Builder

..
.

WebSocket
GPS1

Camera2

WebSocket

MQTT

Camera1

Bluetooth
Beacon1

REST
Connector

Provider
ConnectorSemIoTic

WiFi
2

WiFi
1

Software components pre-built. To develop wrapper for specific 
device, developer just includes information about: underlying 

protocol, parameter, data conversion.



Using SemIoTic

Domain models for a Smart University 
building and a Smart Home

Wrappers for different sensors (e.g., 

Raspberry PI camera, SkySpark
HVAC)

Web application to show 

occupancy related 

information of the smart 
space



Using SemIoTic

SemIoTic
(Smart Building)

SemIoTic
(Smart Home)

Same application and same request but different 
underlying sensors used by SemIoTic

Reduction of development effort (in terms of LoC) by 
55% to 97%



Thanks!


