
ROS-SF: A Transparent and Efficient ROS Middleware using
Serialization-Free Message

Yu-Ping Wang*

BNRist, Tsinghua University
China

wyp@tsinghua.edu.cn

Yuejiang Dong
BNRist, Tsinghua University

China
dongyj21@mails.tsinghua.edu.cn

Gang Tan
The Pennsylvania State University,

University Park
USA

gtan@cse.psu.edu

ABSTRACT
In recent years, ROS becomes the dominant middleware for robotic
systems. The performance of its message-passing paradigm is crucial
to the robot’s reaction time. However, previous works only focus on
efficiency, but ignore the requirement for transparency. We present
ROS-SF framework, which can transparently eliminate serialization
and de-serialization under the ROS APIs. The key contributions are
a new serialization format called SFM and a life-cycle management
method for serialization-free messages. Evaluation results show that
our ROS-SF framework can improve the message-passing perfor-
mance of ROS by up to 76.3%. Application case study and applica-
bility study show that our ROS-SF framework can be transparently
applied to many existing ROS-based systems and packages. Even in
the failure cases, our ROS-SF framework can provide modification
guidance.

CCS CONCEPTS
• Software and its engineering → Message oriented middleware;
Message passing.

KEYWORDS
serialization-free message; robot operating system; message passing
middleware

ACM Reference Format:
Yu-Ping Wang, Yuejiang Dong, and Gang Tan. 2022. ROS-SF: A Transparent 
and Efficient ROS Middleware using Serialization-Free Message. In 23rd 
International Middleware Conference (Middleware ’22), November 7–11,
2022, Quebec, QC, Canada. ACM, New York, NY, USA, 12 pages. https: 
//doi.org/10.1145/3528535.3531518

1 INTRODUCTION
Robot Operating System (ROS) [25] is an open-source robotics
middleware suite that helps developers build robotic systems. Origi-
nally, developing a new robotic system is laborious, because robotic
systems are usually involved in various fields, such as mechanical
control, computer vision, natural language processing, etc. With
the help of thousands of open-sourced ROS packages, developers

*Corresponding Author

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9340-9/22/11.
https://doi.org/10.1145/3528535.3531518

can select and reuse existing ROS packages to implement com-
mon functionality and focus on their own new features. Thus, ROS
can greatly reduce the effort and cost of developing a new robotic
system, and it has become the dominant middleware for robotic
systems in recent years. One of the core features of ROS is its
publish/subscribe message-passing paradigm, which decouples data
dependencies within robotic programs. Robotic programs are con-
nected by the message-passing paradigm to form a complete robotic
system. The performance of the message-passing paradigm is crucial
to the robot’s reaction time.

Message-passing among software modules in the form of inter-
process communication (IPC) is the foundation of distributed sys-
tems. Structured data, such as trees, usually occupies discontinuous
memory segments that are connected by references or pointers. Such
structured data is hard to be transmitted over the wire directly, and
it has to be converted into a continuous buffer before transmission.
The routine that converts structured data into a continuous buffer is
called serialization (or marshalling). Correspondingly, the inverse
routine that converts the continuous buffer back into structured data
is called de-serialization (or unmarshalling). In order to transmit
structured data, serialization techniques have become a standard pro-
cedure for decades. All kinds of transmission middleware, including
ROS, can automatically generate serialization and de-serialization
routines based on their interface definition language (IDL). How-
ever, serialization/de-serialization routines introduce time and space
overhead, especially for large messages. Traditionally, the time cost
is negligible compared to network transmission time. However, with
the development of high-speed networks, the network bandwidth
has increased from 100Mbps to 100Gbps. As a result, the network
latency of transmitting large buffers has been reduced tenfold or
even hundredfold, and the time cost caused by serialization is not
negligible anymore.

If we can eliminate serialization/de-serialization routines by di-
rectly constructing and accessing a message as a serialized buffer,
the message-passing performance can be greatly improved. The Flat-
Data solution [4] in the Connext DDS [27] by RTI and the FlatBuffer
by Google [9] have considered this idea and provide APIs for so-
called Serialization-Free Messages. A serialization-free message is
a message whose memory layout is the same as a serialized buffer.
Thus, for a serialization-free message, serialization on the sender
side and de-serialization on the receiver side can both be eliminated,
and the overall transmission latency can be significantly reduced.
However, their main drawback is that the message-constructing APIs
are greatly different from the APIs for constructing ordinary mes-
sages. In order to benefit from those serialization-free messages,
developers must rewrite their code to adapt. For ROS developers,

82

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3528535.3531518
https://doi.org/10.1145/3528535.3531518
https://doi.org/10.1145/3528535.3531518
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528535.3531518&domain=pdf&date_stamp=2022-10-24


Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Yu-Ping Wang, Yuejiang Dong, and Gang Tan

this is a laborious and even impractical solution, since there have
been over two thousands ROS packages, which are open-sourced
and maintained by different developers.

In this paper, we present ROS-SF, an optimized ROS middleware
that can transparently support serialization-free messages and im-
prove the message-passing performance. To achieve our goal, we
overcome two challenges. Firstly, for the transparency issue, we
find that previous serialized message formats used by FlatData and
FlatBuffer cannot meet the requirement. We design a new serializa-
tion format, named SFM (Serialization-Free Message). The key idea
of our SFM format is to keep the memory layout of messages as
similar as possible to the representation of regular messages. Sec-
ondly, for the efficiency issue, we carefully manage the life-cycle of
serialization-free messages, especially when interacting with devel-
opers’ code, so that it is guaranteed no memory copy introduced in
the whole transmission process. Experimental results show that our
ROS-SF framework can transparently improve the overall message-
passing performance for practical scenarios.

The main contributions of this paper include:
(1) We propose a new serialization format, namely SFM. By

employing our SFM format, serialization-free messages can be con-
structed and accessed in a transparent way for ROS.

(2) We design and implement ROS-SF, which optimizes ROS
with our SFM format and a life-cycle management method for
serialization-free messages.

(3) We perform a performance evaluation. The results show that
our ROS-SF framework can reduce the overall message-passing
latency.

(4) We apply this technique to practical robotic scenarios and
analyze some failure cases.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 discusses the background and motivation of
our work. Section 4 introduces the details of our ROS-SF framework.
Section 5 evaluates the message-passing performance of our ROS-SF
framework. Finally, we conclude in Section 6.

2 RELATED WORK
2.1 Message Passing Middleware
Passing messages among software modules is a fundamental prob-
lem called inter-process communication (IPC) [5]. By the location
of modules, IPC can be classified into 3 categories: intra-process,
intra-machine, and inter-machine. Intra-process IPC handles the sit-
uation when modules are located in the same memory space. Our
ROS-SF framework mainly focuses on improving the performance
of intra-machine and inter-machine IPC.

When modules are located in different memory spaces of the
same machine, the shared memory mechanism can provide solutions
to achieve efficient intra-machine IPC [12, 16, 34]. These systems
can achieve high performance by constructing messages in shared
memory, and directly sharing them among modules. However, their
main drawback is that these solutions are hard to keep compatible
with the inter-machine IPC.

When modules are located across different machines, inter-machine
IPC has to employ network as the transmission channel. In this as-
pect, most researchers have focused on improving the performance
of transmitting a continuous buffer, rather than a structured message.

Kurmann et al. [17] proposed a zero-copy solution for COBRA,
which avoids message copying in kernel space. Huang et al. [15]
proposed the LCM library, which employs the multi-path UDP pro-
tocol when possible to improve transmission performance. They
also designed a lightweight IDL to define message classes, but still
employed the traditional External Data Representation (XDR) [29]
as the serialization format. Rao et al. [26] employed the multi-path
TCP protocol to balance performance and reliability.

General-purpose transmission middleware strives to unify all of
the 3 categories of IPC mentioned above, and relieve the burden
of developers. Some transmission middlewares (such as DDS [31],
CORBA [33], and ROS [25]) design their own IDL to generate mes-
sage classes, serializers and de-serializers. Their performance can
be improved by using customized approaches similar to our ROS-SF
framework. Other transmission middlewares (such as MPI [11] and
ZeroMQ [14]) focus on continuous buffer transmission. Their ap-
plicability can be improved by using our ROS-SF framework, since
our ROS-SF framework can construct serialization-free messages,
whose memory layout is a continuous buffer.

2.2 Serialization Methods
Serialization is a traditional technique that transforms abstract data
types into byte buffers for communication or persistent storage [13].
Sun Microsystems first published the External Data Representation
(XDR) in 1987 [20] which is currently standardized as RFC 4506 [6].
A serialized message of XDR can be divided into smaller continuous
memory segments which are recursively defined with the format of
each serialized field. This principle has a great influence on other
serialization formats, such as Common Data Representation (CDR,
used by CORBA) and its successor, Extended CDR encoding version
2 (XCDR2, used by DDS) [32]. Protocol Buffers (ProtoBuf) [10]
and MessagePack [8] introduce prefix encoding into the serialization
format, which can potentially reduce the size of messages with small
values, and thus reduce the transmission latency. But it also intro-
duces more time overhead to the serialization and de-serialization
routine.

In the late 1990s, XML [3] was designed to make the serialized
messages human-readable. The message in XML format can be
easily embedded into a web page. The design principle of XML has
a great influence on JSON [2] and YAML [1]. However, the size of
a serialized message in plain-text formats is generally larger than
that in binary formats.

Writing serialization routines manually is error-prone. Therefore,
most serialization frameworks support to automatically generate se-
rialization routines by IDL. Furthermore, serialization is supported
by many programming languages, such as Java (Java Object Serial-
ization) [23] and Python (Pickle) [24]. But their serialization formats
share the same principles above.

2.3 Serialization-Free Frameworks
To the best of our knowledge, FlatData by RTI [4] and FlatBuffer
by Google [9] are the only two serialization-free frameworks so far.
FlatData uses the same serialization format with regular messages
(i.e., XCDR2), to provide better compatibility. As a result, a FlatData
message can only be constructed in a recursive order, although
the order among fields is not restricted. Besides, constructing and

83



ROS-SF: A Transparent and Efficient ROS Middleware using Serialization-Free Message Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

accessing such a message require extra classes, i.e., Builder classes
and Offset classes, which hurts the transparency. The serialization
format designed for FlatBuffer is inspiring, but still has drawbacks.
The FlatBuffer APIs for constructing and accessing a message are
similar with FlatData, and have the same restrictions. Our SFM
serialization format introduces a new principle that the memory
layout of a serialized message is as much similar as possible to the
regular messages. As a result, our SFM format enables source-code
level transparency. Furthermore, both FlatData and FlatBuffer leave
the problem of managing the life cycle of messages to developers,
but our ROS-SF framework carefully addresses these problems and
manages the life cycle of messages transparently under the ROS
APIs.

Naos [30] is another interesting direction of serialization-free
framework. Rather than organizing a message into a continuous
buffer, Naos directly transmits the message segment by segment,
and rebuilds connections between segments after received. Naos
is transparent, but their transparency means that developers do not
need to manually split messages into segments, and developers still
need to rewrite their code to use Naos API.

3 BACKGROUND AND MOTIVATION
For better understanding, in this section, we take image transmission
process as an example, to show the program pattern of ROS, FlatData,
and FlatBuffer. For simplicity, the message used in this section is
a simplified Image, whose representation is shown in Fig. 1. Each
Image message contains fields named encoding, height, width, and
data, where encoding is a string that indicates the encoding method,
height and width are integers that indicate the height and the width
of the image respectively, and data is a sequence of bytes that stores
the color of pixels.

Figure 1: A simplified Image representation.

3.1 Program Paradigm of ROS
For ROS, the representation in Fig. 1 is automatically translated into
a C++ structure, shown in Fig. 2. The size of C++ structures is fixed,
so the variable-size data, such as std::string and std::vector, should
be stored in allocated heap segments. Therefore, such structures need
to be serialized before transmission, and de-serialized after received
and before accessed.

A typical program pattern of ROS is shown in Fig. 3. A more
detailed version can be found in the official tutorial of ROS 1. On
the Publisher side, a NodeHandler object is created first, which
represents the process that the program runs within. By calling the
advertise API, a new Topic is declared, which is a communication
channel in ROS, and a Publisher object is created which will be
used to publish messages later. Then, an Image object is defined,
1http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29

Figure 2: ROS representation.

which represents an image to be transmitted. In this example, the
Image object is assigned with 10 × 10 pixels, and each pixel con-
sists of 3 bytes, thus the total length of data is 300 bytes. It is then
published via the Publisher object. Inside the publish API, the Im-
age object is serialized into a buffer with the serialization routine
automatically generated by ROS, and the buffer is then put into a
transmission queue. On the Subscriber side, a callback function is
defined, which takes a constant smart pointer (Image::ConstPtr is
defined as std::shared_ptr<const Image>) as its argument. A Node-
Handler object is also created first. By calling the subscribe API,
the callback function is registered to ROS. When the buffer from
the Publisher side arrives, it is de-serialized into an Image object,
and the callback function is triggered with the Image object as its
argument. The Image object is allocated on heap, and its life cycle
is managed by the smart pointer. The Image object will be released
when there is no smart pointer pointing to it.

Figure 3: A common program pattern for ROS.

3.2 Program Paradigm of FlatData
In fact, the API for ordinary RTI Connext DDS is very similar to
the program pattern shown in Fig. 3. However, the FlatData API
is greatly different, because messages are directly constructed as if
they have been serialized. Fig. 4 shows an example of its program
pattern which uses the FlatData API to create an Image message.
Creating messages directly is not allowed in FlatData, and helper
classes such as ImageBuilder must be used in the creating process.
After creating the message, a finish_sample API must be called. The
message can then be published with the write API.

The great difference in program pattern is mainly because Flat-
Data uses XCDR2 as the message format for forward compatibility.
The memory layout formed by the FlatData code in Fig. 4 is shown in
Fig. 5. In the XCDR2 format, each field is corresponding to a mem-
ory segment. The memory segments share the same order with the
message construction routine. An example is that the construction
order in Fig. 4 is the same with the order of fields in the generated
memory layout in Fig. 5.

84

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29


Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Yu-Ping Wang, Yuejiang Dong, and Gang Tan

Figure 4: The corresponding program pattern for FlatData.

Figure 5: The memory layout of an Image message generated by
FlatData.

As we can see, the total size of these memory segments is not
fixed, and even the offset of each field is not fixed, which is different
from a C++ structure. This is why we have to use interfaces (such as
.height()) to access fields in the Subscriber side of Fig. 4. Besides,
these methods must traverse all fields until the desired field is found
by its index. Overall, it is impossible to achieve transparency under
such serialization format.

3.3 Program Paradigm of FlatBuffer
FlatBuffer has the same problems with FlatData. Its APIs are similar
with FlatData, where Builder classes are needed to build a serialized
message. But the serialization format for FlatBuffer is different. The
program pattern for FlatBuffer is similar with that of FlatData shown
in Fig. 4. The memory layout of the resulting message is shown in
Fig. 6.

In FlatBuffer, the message is generated with a stack. The first-
assigned field is stored at the end of the serialized message. The
highlight of this serialization format is the use of tables to look up
fields and offsets to reference other data.

However, this serialization format still has drawbacks in terms of
transparency. As we can see from Fig. 6, although the size of the
vtable and the offset of each field in the vtable are fixed, the values
of fields are stored in the root table and can only be found indirectly
from the vtable. Therefore, we still have to use interfaces to access
fields, rather than accessing it as accessing a field in a C++ structure.

Figure 6: The memory layout of an Image message generated by
FlatBuffer.

3.4 Challenges for Transparency and Efficiency
Neither FlatData nor FlatBuffer can achieve transparency, because
of their serialization format. Our key idea is to design a serialization
format that is as similar as possible with the memory layout of a
C++ structure, so that developers are able to access fields just like
accessing fields of a C++ structure, without using any other functions
or interfaces.

Besides, there is an issue on managing the life cycle of serialized
messages. Take the code shown in Fig. 3 as an example. On the
Publisher side, after calling the publish API, the message object can
be released by the developer’s code, and the serialized message is
left waiting for transmission. However, in our ROS-SF framework,
the message object and the serialized message are the same object.
Otherwise, copying between them would bring almost the same time
overhead as serialization and de-serialization, which hurts efficiency.
When the message object is released by the developer’s code, we
have to find a way to prevent the memory of it from being freed,
because it still might be used as the serialized message. On the
Subscriber side, once ROS de-serializes the buffer into a message
object, the buffer is not used any more and is released by ROS
before triggering the callback function. However, in our ROS-SF
framework, the buffer and the message object are the same object.
Similarly, copying between them hurts efficiency. Thus, a proper
time to release it must be found. Freeing the memory when it is still
used as a buffer or a message object would lead to program crash.
The official documentation of FlatData emphasizes that after calling
the write API, the serialized message is owned by the writer and
developers should not release it. FlatBuffer just leaves the life cycle
problem to developers.

Overall, it is a challenging problem to ensure transparency and
efficiency simultaneously. We design a new serialization-free frame-
work, ROS-SF, that is more transparent than existing ones, while
remaining efficient. Transparency and efficiency are ensured by
designing SFM serialization format and run-time management of
message life cycle.

85



ROS-SF: A Transparent and Efficient ROS Middleware using Serialization-Free Message Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

4 APPROACH
In this section, we firstly introduce our SFM serialization format, and
explain how it solves the transparency problem. Then we introduce
our management of message life cycle, and explain how it solves the
efficiency problem. And finally, we introduce some implementation
details and further discussions.

4.1 SFM Serialization Format
For better understanding, we also use the example in Section 3. By
our SFM serialization format, the resulting memory layout is shown
in Fig. 7. The key to our SFM format is to recursively define the
skeleton of a field or a message.

Figure 7: The memory layout of an Image message under our
SFM format.

All basic types that ROS supports are fixed-size types (e.g. uint32_t),
except for string (i.e. encoding in the example) and vector (i.e. data
in the example). The memory layout of a field with fixed-size basic
types is the same as a ROS serialized message. The skeleton of such
field is equivalent to its memory layout.

The memory layout of a string field starts with two 32-bit integers.
The combination of these two integers is defined as the skeleton of
the string field. The first integer is the length of the string, which
indicates how many bytes the string content occupies, including the
terminal zero and padding bytes. In this example, the first integer
of the encoding field is stored at the address 0x0000. Its actual
content is “rgb8", which indicates that each pixel contains 3 color
channels and each channel is an 8-bit number. Therefore, its length
is 8 (4 bytes for content, 1 byte for the terminal zero, and 3 bytes for
padding). The second integer is the offset to the content of the string.
In this example, it is stored at the address 0x0004, and its value 20
indicates that the actual content of the string is at 0x0004 + 20 =
0x0018.

It is similar for vectors. The memory layout of a vector field starts
with two 32-bit integers. The combination of these two integers is
defined as the skeleton of the vector field. The first integer is the
number of elements in the vector. In this example, the first integer of
the data field is stored at the address 0x0010. Its value 300 indicates
that there are 300 bytes in the data field. The second integer is the
offset to the elements of the vector. In this example, it is stored at
the address 0x0014. Its value 12 indicates that the elements of the
vector start from 0x0014 + 12 = 0x0020.

Then, we can define the skeleton of a message as the combination
of the skeletons of all fields in the order of the message definition.

The memory layout of such a message starts with the skeleton of
it. And we define the whole message as the memory layout that
contains all data of the message. In this example, the skeleton of the
message is from the address 0x0000 to the address 0x0018, and the
whole message is from the address 0x0000 to the address 0x014c.

Besides, our SFM format supports nested messages. When a field
of a message A is another message B, the skeleton of this field is the
skeleton of the message B. When elements of a vector are message
B, the skeleton of each element is the skeleton of the message B. The
offset in a vector (the second integer in the skeleton of the vector)
points to a memory segment which contains the skeletons of all
elements in the ascending order of index.

Thus, our SFM format has the following features.

• The size of the skeleton of a message is fixed. Because the
only variable-length types that ROS supports are string and
vector, and both their skeletons occupy a fixed-length memory
of 8 bytes. Therefore, the size of a message composed of
basic types is fixed. When a field of a message A is a message
B, only the skeleton of B is contained in the skeleton of A.
Recursively, the size of the skeleton of a nested message is
fixed.

• The offset of a field in the skeleton of a message is fixed.
Because the order of fields is fixed, the size of the skeleton of
each field is fixed.

• The size of each vector element is fixed. Even if vector ele-
ment is a message, only the skeleton of the message is con-
tained in the vector, whose size is fixed. Since the elements of
a vector are continuously stored in the memory region pointed
to by the vector offset, they can be accessed as elements of a
C++ array.

The above features show that the skeleton of a message can be
expressed as a C++ structure, which is defined as the SFM message
class. Specifically, the skeleton of a string is expressed as sfm::string,
and the skeleton of a vector is expressed as sfm::vector. In our design,
we keep the interfaces of sfm::string and sfm::vector the same with
those of std::string and std::vector, respectively, eliminating the code
rewriting cost for developers to use our format.

4.2 Management of Message Life Cycle
The life cycle of a serialization-free message is more complex than
ordinary message objects. A message manager class is designed
(namely sfm::mm), and a global message manager object (namely
sfm::gmm) is defined to manage the life cycle of serialization-free
messages. Each serialization-free message in our ROS-SF framework
has three states, namely Allocated, Published, and Destructed.

On the Publisher side, the life cycle of an Image message is shown
in Fig. 8. When a message is defined, a memory segment should be
allocated for it. Our ROS-SF framework assumes that at run time, all
serialization-free messages are allocated in the heap. This assump-
tion is ensured by our compile-time checker and converter, which
will be introduced in Section 4.3.2. When a message is initialized, a
memory segment is allocated in the heap, whose size is large enough
for the largest message of this message type. This size is defined
by developers in the IDL. This is also the solution used by FlatData
and FlatBuffer to avoid memory reallocation. But they implement
this initial memory allocation by creating a Builder object, which

86



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Yu-Ping Wang, Yuejiang Dong, and Gang Tan

is not transparent. In our ROS-SF framework, the initial memory
allocation is implemented by overloading the global new operator
and explicitly specializing the std::make_shared template function.
The allocated memory segment is then registered into the message
manager, and the message enters the Allocated state.

Figure 8: Message state changes at the Publisher side. A record
in the global memory manager holds a smart pointer to the
message memory. When the message is published, a copy of the
smart pointer is provided to the ROS transmission queue. The
message memory is freed only when the reference count becomes
zero.

Based on our SFM format, the size of the whole message could
increase during its life cycle. This only occurs when extra memory
is required for vector elements or string contents. At this time, we
only know the start address of the field that requests memory. We
need to find the current end of the whole message and expand the
whole message. When a message is initially allocated in the heap,
the message manager is informed. The start address of the message
and its initial size (i.e. the size of the skeleton of the message) are
recorded within the message manager. Whenever a field requests
for extra memory, the message manager is informed to find the
corresponding record of the message based on the address of the
requesting field. The start address and the size in the record are used
to find the current end of the whole message. The record is then
updated to the increased size.

When a message at the Allocated state is published, it enters
the Published state. A message at the Published state acts as two
roles, i.e. as a message object, and as a serialized buffer waiting for
transmission. In ROS, the message object and the serialized buffer
are independent of each other. The message object is managed by
the developer’s code. The serialized buffer is allocated in the heap
and managed with a smart pointer of type std::shared_array. In
the following explanation, this smart pointer is referred to as the
buffer pointer. In our ROS-SF framework, since the message object
and the serialized buffer occupy the same memory, the message
object cannot be freed when the developer’s code releases it, because
the serialized buffer is still in use and waiting for transmission.

Only when the developer’s code has released the message object
and the buffer has been transmitted, can the underlying message
memory be freed. To solve the releasing issue, our solution is to
construct a buffer pointer in the message manager, when the message
is initially allocated. When the publish interface is called, a copy of
the buffer pointer is provided to ROS. The serialized buffer is then
waiting for transmission and the reference count of it is increased.
When the message object is released by the developer’s code, the
message manager is informed. This is achieved by overloading the
global delete operator. The message manager releases the record
of the message along with its buffer pointer, and thus the reference
count of the serialized buffer is decreased. If ROS has not finished
transferring the serialized buffer, ROS will still hold a copy of the
buffer pointer, and the reference count of the serialized buffer will
not be zero. Only when the reference count becomes zero, will the
message memory be actually freed, and the message will enter the
Destructed state. If a message is released by the developer’s code
before published, the reference count instantly becomes zero, and
the message memory is freed.

Figure 9: Message state changes at the Subscriber side.

On the Subscriber side, the life cycle is shown in Fig. 9. When
a buffer is received, ROS also manages it with a smart pointer of
type std::shared_array. Before ROS triggers the callback function,
the de-serialization routine is called. This de-serialization routine
is generated by ROS. In this routine, a message object is generated
from the received buffer, and managed with a smart pointer of type
shared_ptr. In the following explanation, it is referred to as the object
pointer. The object pointer is passed as the argument to the callback
function. In our ROS-SF framework, a dummy de-serialization rou-
tine is generated, where the message manager is informed to obtain
the ownership of the buffer pointer. It is also called before the call-
back function is triggered. Then, the message directly enters the
Published state. At this time, there are two smart pointers. One of
them is the buffer pointer that manages references to the message
memory, which is stored in a record in the global message man-
ager. The other is the object pointer that manages references to the
message object, which is provided to the callback function. After
returning from the callback function, the object pointer is released.
But the message object can still exist, because inside the callback
function, the developer’s code can add references of the message
object by creating copies of the object pointer. When the reference
count of the message object becomes zero, the message manager is
informed, because of the overloaded global delete operator. The mes-
sage manager then releases the record, thus the reference count to

87



ROS-SF: A Transparent and Efficient ROS Middleware using Serialization-Free Message Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

the message memory becomes zero, and finally the message memory
is freed.

Overall, the management of message life cycle is achieved by
designing a message manager and overloading message-associated
code. There is no need to modify the developer’s code, thus the
code-level transparency is maintained. Furthermore, messages are
never copied or improperly freed, thus the whole-process efficiency
is guaranteed.

4.3 ROS-SF Framework
In summary, our ROS-SF framework consists of three modules,
namely SFM Generator, ROS-SF Converter, and ROS-SF Library.
The routine of applying our ROS-SF framework is shown in Fig. 10b,
which is straightforward compared with the normal compiling rou-
tine of ROS (shown in Fig. 10a).

• The SFM Generator generates header files which define mes-
sage classes that follow our SFM format based on ROS’s
existing IDL.

• The ROS-SF Converter checks the source code, and automat-
ically modifies it if necessary.

• The ROS-SF Library provides the implementation of auxiliary
classes, including sfm::vector, sfm::string, and sfm::mm. It is
linked into the final executable.

(a) (b)

Figure 10: (a) Normal compiling routine of ROS. (b) Compiling
routine of our ROS-SF framework.

4.3.1 SFM Generator. The SFM Generator is implemented based
on the ROS message generator genmsg. Most of the message class
generation routine is the same, except for the following features.

• Overloaded global new and delete operator. They are used to
help the management of the message life cycle.

• Copy constructor and an overloaded = operator. Since the
message class expresses the skeleton of messages, the default
copy constructor and = operator can only copy the skeleton
of a message. They are generated to find the current size of
the whole message from the message manager and copy the
message.

• Overloaded ROS serialization routine. It is generated to avoid
normal serialization, and add a reference to the buffer array.

• Overloaded ROS de-serialization routine. It is generated to
avoid normal de-serialization, and inform the message man-
ager to add a reference to the buffer array.

4.3.2 ROS-SF Converter. As we have stated in Section 4.2,
serialization-free messages must be allocated in the heap. This is
not always true, even for the program pattern shown in Fig. 3. Our
ROS-SF Converter is designed to convert a program so that all
serialization-free messages are allocated on heap in the resulting
program.

Source code level analysis would misidentify classes with the
same name as our message class. Therefore, we implement the
ROS-SF Converter based on LLVM [18, 19]. At the LLVM IR
(Intermediate Representation) level, all C++ features that could affect
the class name (e.g. namespace, macro, typedef, template, etc) are
all translated into their demangled identity name. And we can find
the location within the source code from the debugging information
associated with IR instructions. As a result, ROS-SF Converter can
automatically find messages that are defined as local variables, and
modify the code to perform heap allocation instead. An example
is shown in Fig. 11. The original local variable is changed into a
reference to the message allocated in the heap. There is no need
to change the following instructions, because the C++ grammar
for the variable and the reference are the same. Besides, when the
life cycle of the local variable ends in the original code, the life
cycle of the smart pointer also ends in the modified code. Therefore,
their semantics are consistent. Note that the global new operator is
overloaded by the header file generated from the SFM Generator, so
that “new Image" would allocate enough memory for the message.

Figure 11: The code before modification is the same as Fig. 3.
The ROS-SF Converter automatically finds the message defined
as a local variable and modifies it to perform heap allocation.

4.3.3 ROS-SF Library. In the ROS-SF Library, we implement
three main auxiliary classes, namely sfm::string, sfm::vector, and
sfm::mm.

For the sfm::string class, it contains the length of the string and
an offset whose initial values are both 0. When it is assigned for
the first time, the whole message is expanded with the help of the
message manager. When it is assigned again, the memory that stores
the string content needs to be reallocated. This could be done by
further expanding the whole message, but this solution would waste
memory and possibly break the memory limit. Our solution is that
when the length of the reassigned string is not 0, an alert is raised
to developers. We assume that there is no reassignment to strings,
because a reassignment also hurts the performance of the program.
This assumption is referred to as the One-Shot String Assignment
Assumption; we will discuss our applicability study of checking this
assumption in Section 5.4. For better transparency, we also imple-
ment other interfaces to keep consistency with std::string, such as

88



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Yu-Ping Wang, Yuejiang Dong, and Gang Tan

constructors, operator =, length(), c_str(), operator [], etc. Besides,
type conversions to char * and std::string are also implemented.

For the sfm::vector template, it contains the size of the vector
and an offset whose initial values are both 0. When it is resized for
the first time, the whole message is expanded with the help of the
message manager. When it is resized again, the situation is similar to
string reassignments. Our solution is that when the size of the resized
vector is not 0, an alert is raised to developers. This assumption is
referred to as the One-Shot Vector Resizing Assumption, and we will
discuss our applicability study of checking this assumption in Sec-
tion 5.4. For better transparency, we also implement other interfaces
to keep consistency with std::vector, such as constructors, operator
[], begin(), end(), and etc. We also implement the corresponding
iterator template.

Besides string assignment and vector resizing, there are other
modifier interfaces that may trigger memory reallocation, such as
push_back() and pop_back(). Our solution is to advise developers
not using them, and developers will get compilation errors if they are
called. We assume that none of these modifier interfaces are called.
This assumption is referred to as the No Modifier Assumption, and
we will discuss our applicability study of checking this assumption
in Section 5.4.

These three assumptions aforementioned are also implicitly as-
sumed in FlatData and FlatBuffer. There are no modifier interfaces
in their APIs, and they also raise alerts when a string in a message is
reassigned or a vector is resized.

The sfm::mm class is implemented to manage the life cycle of
messages. Looking for the record of a message with its start address
can be easily implemented by maintaining a std::map. But when
expanding the whole message, it is needed to find the record of a
message with an address in the middle of the message. Currently, we
implement it as a binary search from a std::vector of ordered records.
It could be further optimized, but according to our evaluation result
in Section 5, it appears to be efficient enough. Note that we cannot
implement the message manager as an STL compatible allocator.
When allocating memory, a normal allocator only accepts the desired
size. But we need to know “who" is getting more memory, so that
the message manager can find the end of the message and expand it.

4.4 Discussion
4.4.1 Endianness. When communicating among machines with
different architectures, the endianness issue has to be considered.
In our ROS-SF framework, the endianness of a serialization-free
message is the same as the publisher side. Therefore, it is up to
the subscriber side to decide whether the endianness of the serial-
ized message needs to be converted. This is a common issue that
all serialization-free frameworks are facing. If the endianness con-
version is inevitable, it could be time-consuming, and could even
counteract the efficiency brought by serialization-free frameworks.

4.4.2 Other Data Structures. Some serialization formats support
advanced features and/or data structures. Currently, our SFM format
does not support them because they are not supported by ROS. But
we would like to discuss two examples for potential extensions.

In ProtoBuf, each field can be labelled as optional. If a message is
constructed without assigning this field, the message will not contain
it. For our SFM format, an optional field with fixed-size basic types

could be assigned as a user-defined default value; an optional field
with other types could be treated as a vector with its upper bound
set as 1.

ProtoBuf also supports the type of “map”, which represents a key-
value map. The in-memory representation of a map field is complex.
Our SFM format can treat it as a vector of key-value pairs, which is
also the solution used by ROS.

5 EVALUATION
In this section, we firstly conduct two simple experiments to show
the performance improvement by our ROS-SF framework. Then, we
conduct an application case study, to show that our ROS-SF frame-
work can transparently handle practical applications. We further
show and discuss some failure cases.

5.1 Intra-Machine Performance
The first group of experiments is performed on one machine to show
the performance improvement to intra-machine transmission. In this
experiment, as shown in Fig. 12, one ROS node (named pub) acts as
a publisher and the other (named sub) acts as a subscriber. A topic
with the type of sensor_msgs::Image connects these two nodes. The
code of these two nodes are similar to those in Fig. 3. At the pub
node, an Image message is created, and the creation time is stored
into the message. Then, after the content of the message is properly
set, it is published. At the sub node, whenever a new message arrives,
a callback function is triggered, and the time difference between
current time and the time stored in the message is recorded. The
above routine is repeated 2,000 times at a frequency of 10 Hz.

Figure 12: The relationship of the nodes and topic in our intra-
machine performance test.

For the original ROS, the recorded time difference includes the
time of message construction, serialization, loopback transmission
via a TCP/IP socket, and de-serialization. For our ROS-SF, the same
code is used, but the recorded time difference includes only the
time of message construction and transmission, because serialization
and de-serialization are eliminated. Since the serialization and de-
serialization time depends on the size of the message, we repeat our
experiment for three different image sizes: ∼ 200KB (256 × 256 ×
24bits), ∼ 1MB (800×600×24bits), and ∼ 6MB (1920×1080×24bits).
The results are organized into Fig. 13.

In Fig. 13, the boxes represent the average latency in milliseconds,
and the black lines represent the standard deviation. As we can see,
our ROS-SF framework can greatly reduce the transmission latency.
When the image size increases, the serialization and de-serialization
time increase, and thus the performance improvement by our ROS-
SF framework also increases. Especially, when the image size is
6MB, our ROS-SF framework can reduce the average transmission
latency by about 76.3%.

We also run the same test with 6MB image size using different
middleware, and the results are organized into Fig. 14. The differ-
ences between serialization-free framework and its corresponding

89



ROS-SF: A Transparent and Efficient ROS Middleware using Serialization-Free Message Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Figure 13: Comparison of intra-machine transmission latency
with different message size.

serialization framework indicate the time reduced by eliminating
serialization. The difference between FlatBuf and ProtoBuf is the
smallest among the three groups, indicating the serialization routine
of ProtoBuf is well optimized. The transmission latency of RTI-
FlatData is the smallest, indicating the transmission routine of RTI /
RTI-FlatData is well optimized. Using ROS-SF, the transmission la-
tency could be reduced to the same scale as FlatData and FlatBuffer,
without introducing any code rewriting burden for developers, which
is inevitable when using FlatData or FlatBuf.

Figure 14: Comparison of intra-machine transmission latency
with different middleware.

5.2 Inter-Machine Performance
The second group of experiments is performed on two machines
connected with Intel82599 10 Gigabit Ethernet controller, to show
the performance improvement to inter-machine transmission. We
cannot simply repeat the intra-machine performance experiment by
running the pub and the sub node on different machines, because syn-
chronizing time between two machines is very difficult, especially
at the millisecond level. Therefore, we employ the commonly used
ping-pong methodology. In this experiment, as shown in Fig. 15,
there are 3 nodes and 2 topics. The first node (pub) publishes an Im-
age message via the first topic. The second node (trans) subscribes

to the first topic. Once the second node receives a message, it creates
another Image message, whose timestamp is set to be the same as
the received message, and the message is published via the second
topic. The third node (sub) subscribes to the second topic and records
the time difference between current time and the time stored in the
message. The pub and the sub node run on machine A, and the trans
node runs on machine B. Both the final received time and the time
stored in the message are the time at machine A, so it is reasonable
to subtract them directly. The above routine is repeated 2000 times
at a frequency of 10 Hz.

Figure 15: The relationship of the nodes and topics in our inter-
machine performance test.

For the original ROS, the recorded time difference includes the
time of two message constructions, two serializations, two loopback
transmissions via TCP/IP sockets, and two de-serializations. For our
ROS-SF, the recorded time difference includes only two message
constructions and two transmissions. We also repeat our experiment
for 3 different image sizes. The results are organized into Fig. 16.

Figure 16: Comparison of inter-machine transmission latency
with different message size.

In Fig. 16, the boxes represent the average ping-pong latency in
milliseconds, and the black lines represent the standard deviation.
Approximately, we can divide the ping-pong latency by 2 to obtain
the one-way transmission latency. As we can see, our ROS-SF frame-
work can greatly reduce the transmission latency. When the image
size increases, the serialization and de-serialization time increases,
and thus the performance improvement by our ROS-SF framework
also increases. Especially, when the image size is 6MB, our ROS-SF
framework can reduce the average transmission latency by about
69.9%.

90



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Yu-Ping Wang, Yuejiang Dong, and Gang Tan

5.3 Application Case Study
To show that our ROS-SF framework can transparently handle prac-
tical application cases, we employ ORB-SLAM [21] to conduct an
application case study.

SLAM (Simultaneous Localization and Mapping) is one of the
most important components for robotic systems [28]. The main
purpose of SLAM algorithms is to “identify" where the robot is,
based on input sensor data and a known map. In addition, when the
robot moves to an area outside the known map, SLAM algorithms
can simultaneously expand the map. If input sensors contain one or
more cameras, such an algorithm is called a visual SLAM algorithm.
ORB-SLAM is one of the state-of-the-art visual SLAM algorithms.

As we can see from its purpose, ORB-SLAM requires a sequence
of images as its input, and generates the location and orientation of
the camera. In its open-sourced version for ROS, these are realized by
subscribing a ROS topic with the type of sensor_msgs::Image, and
publishing a ROS topic with the type of geometry_msgs::PoseStamped.
ORB-SLAM also generates several other outputs. A point cloud,
which contains the corresponding 3D points of the feature points
on the 2D input image, is generated for further processing by other
software modules, such as the obstacle avoidance module. This is
also implemented by publishing a ROS topic with the type of sen-
sor_msgs::PointCloud2. An image, which combines the input image
and the feature points, is generated for debugging purpose. The input
images, output point clouds, and debugging images are usually large
in size, therefore suitable for applying our ROS-SF framework.

Overall, Fig. 17 shows the simplified relationship of the nodes and
topics in our application case study. We employ a ROS node called
pub_tum to provide input images to ORB-SLAM. These images
are from the TUM RGBD dataset [7], which is one of the most
commonly used datasets to evaluate SLAM algorithms. To evaluate
the overall latency, we design 3 ROS nodes that subscribe to the
output poses, the point clouds, and the debug images, respectively.
These 3 ROS nodes record the time differences from the time when
the input image is created to the time when the output messages are
received.

Figure 17: The relationship of the nodes and topics in our appli-
cation case study.

All of the 5 ROS nodes can be supported by our ROS-SF frame-
work without any manual modification on the source code. The la-
tency results are shown in Fig. 18. These latency results include the
time of input image construction, input image transmission, calcula-
tion of the ORB-SLAM algorithm, the output message construction,
and output messages transmission. Among them, the calculation

time of the ORB-SLAM algorithm is about 30-40 ms which is the
major part of all latencies, and the cause of the overlap of confidence
intervals. Under such harsh condition, our ROS-SF framework can
still reduce the overall latency by about 5%.

Figure 18: Comparison of the overall latency of ORB-SLAM
using ROS and ROS-SF.

5.4 Applicability Study
As we have stated, our ROS-SF framework can transparently im-
prove the message-passing performance under 3 assumptions. When
these assumptions are violated, our ROS-SF framework would fail,
either by compilation error (the No Modifier Assumption) or run-
time prompt (the One-Shot String Assignment and the One-Shot
Vector Resizing Assumptions). To show the applicability of our
ROS-SF framework, we conduct a study on the software modules
maintained by the official ROS team (125 packages, 486 source files).
We manually check the usage of some message classes, and check
whether they satisfy our assumptions. The results are organized in
Table 1. The “Total” column shows the number of files that use the
corresponding message class; the “Applicable” column shows the
number of files that satisfy all our assumptions; the “String Reassign-
ment” column shows the number of files that violate our Assumption
1; the “Vector Multi-Resize” column shows the number of files that
violate our Assumption 2; the “Other Methods” column shows the
number of files that violate our Assumption 3.

As shown in Table 1, most of the application scenarios of the
Image message class satisfy our assumptions. We would also like to
discuss some of the failure cases.

The first failure case (shown in Fig. 19) comes from a soft-
ware module in which an image is transformed with specific affine-
transformation parameters and the result image is published to other
software modules. The transformation is implemented with a com-
monly used image-processing library named OpenCV [22]. After the
transformation, line 218 states that it will convert the OpenCV image
(out_image) into a ROS Image message (out_img) with supplemen-
tary information of msg->header and msg->encoding. Inside this
conversion routine, an Image message is constructed and all of its
fields are filled. Our ROS-SF framework can handle this kind of con-
version well. However, line 219 modifies the header.frame_id field
of the output Image message. The header.frame_id field indicates
the coordinate system used by this message, which is important in

91



ROS-SF: A Transparent and Efficient ROS Middleware using Serialization-Free Message Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Message Class Total Applicable String Reassignment Vector Multi-Resize Other Methods
sensor_msgs::Image 49 40 8 6 0
sensor_msgs::CompressedImage 7 2 5 5 0
sensor_msgs::PointCloud 14 0 13 12 2
sensor_msgs::PointCloud2 15 1 7 7 8
sensor_msgs::LaserScan 18 5 13 12 1

Table 1: The results of applicability study.

robotic systems because there could be dozens of coordinate systems
involved with a robot, such as the world coordinates, the motor base
coordinates, the camera coordinates, etc. This modification violates
our One-Shot String Assignment Assumption. In this case, our ROS-
SF framework would prompt the developer to avoid this violation.
The modification is simple: prepare a temporary header before line
218, do the assignment of line 219 as the first assignment of the
header.frame_id field, and provide it as the input argument of line
218. This failure case represents a major kind of our failure cases.
We can rewrite the code to a more efficient version which satisfies
our assumption (shown in the lower part of Fig. 19).

Figure 19: Failure case that violates our One-Shot String Assign-
ment Assumption. A string field is assigned twice.

The second failure case (shown in Fig. 20) comes from a software
module in which input data is packed into specific message classes.
In this failure case, two images with the OpenCV format (left_rect
and right_rect in line 83) are converted into a DisparityImage mes-
sage (disparity in line 85). Part of this disparity image message is
an Image message. Line 104 creates a reference (dimage) of the
Image message within the DisparityImage message. And line 109
resizes the data field of dimage. If the data field of the input argument
disparity has been resized before calling this method, this resizing
operation may violate our One-Shot Vector Resizing Assumption. In
this case, our ROS-SF framework would also prompt the developer
to avoid this violation. In fact, the disparity argument of the process-
Disparity method, serves as an output reference. We can confirm that,
in this software module, all callers of the processDisparity method
pass an argument without a resized data field. However, this source
file is also compiled into a separate library, which will be used by
other software modules. Therefore, we cannot confirm that other
software modules also follow the assumption. This failure case also
represents a major kind of our failure cases. When a constructed
message is passed as an output argument, we cannot confirm that all

callers follow our assumption, especially if the code is compiled to
a separate library. For the sake of rigor, we count them all as failure
cases.

Figure 20: Failure case that violates our One-Shot Vector Resiz-
ing Assumption. A vector field is possibly resized before.

The third failure case (shown in Figure 21) comes from the same
software module with the second failure case. It packs input data into
a PointCloud message. In this failure case, the “push_back” method
is used in line 164, which violates our No Modifier Assumption.
In this case, our ROS-SF framework would generate a compilation
error, since our auxiliary class sfm::vector has not implemented
the push_back method. The main reason of using the push_back
method is that not all points in the “dense_points_” will be added
to the message because of line 158. Point clouds usually contain
thousands of points in practice, and the push_back method would
trigger reallocation many times, especially when the “points” field
is initially resized to 0 at line 147. Even if we replaced line 147 with
code that reserves enough memory for the “points” field, it would
lead to a waste of memory space; in the extreme case, if none of
the points passes the check at line 158, the actual usage of memory
would be 0. This failure case also represents another major kind of
our failure cases. Rewriting it to satisfy our No Modifier Assumption
is possible (shown in the lower part of Figure 21. In the rewritten
code, we first count the number of the valid points, resize the “points”
field of the message to a proper size, and then “push” them into the
message. We believe that the rewritten code is more efficient even
for the original ROS, because less reallocation would be triggered.

6 CONCLUSION
In this paper, we present ROS-SF, a middleware which can trans-
parently improve the message-passing performance of ROS. It is
based on a new serialization format, namely SFM. The main design
principle of SFM is to make the memory layout of serialization-
free messages keep the same as regular messages. Based on our

92



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Yu-Ping Wang, Yuejiang Dong, and Gang Tan

Figure 21: Failure case that violates our No Modifier Assumption.
Other modifier method (push_back) is used.

SFM format, our ROS-SF framework can transparently eliminate
serialization and de-serialization under the ROS APIs.

Evaluation results show that our ROS-SF framework can improve
the message-passing performance of ROS by up to 76.3%, and can
be transparently applied to large-scale robotic projects such as ORB-
SLAM. Applicability study results show that our ROS-SF framework
can be easily applied to many existing ROS packages. Even in the
failure cases, our ROS-SF framework can provide prompts, which
can help developers to modify their code to satisfy our assumptions.

ACKNOWLEDGEMENTS
The authors deeply thank for the reviewers’ comments which help
to improve the quality of the paper. This work was supported by
the National Natural Science Foundation of China under Grant
No. 61872210.

REFERENCES
[1] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. 2021. YAML Ain’t Markup

Language Version 1.2. (October 2021). Retrieved May 9, 2022 from https:
//yaml.org/spec/1.2/spec.html

[2] Tim Bray. 2017. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259 (2017), 1–16. https://doi.org/10.17487/RFC8259

[3] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. 1997. Extensible Markup
Language (XML). World Wide Web J. 2, 4 (1997), 27–66. http://www.w3.org/
TR/WD-xml-970807

[4] Alex Campos. 2019. FlatData API. (March 2019). Retrieved May 9, 2022 from
http://community.rti.com/examples/flatdata-api

[5] Peter Druschel and Larry L. Peterson. 1993. Fbufs: A High-Bandwidth Cross-
Domain Transfer Facility. In Proceedings of the Fourteenth ACM Symposium
on Operating System Principles, SOSP 1993, The Grove Park Inn and Country
Club, Asheville, North Carolina, USA, December 5-8, 1993. 189–202. https:
//doi.org/10.1145/168619.168634

[6] Mike Eisler. 2006. XDR: External Data Representation Standard. RFC 4506
(2006), 1–27. https://doi.org/10.17487/RFC4506

[7] Jakob Engel, Vladyslav C. Usenko, and Daniel Cremers. 2016. A Photometrically
Calibrated Benchmark For Monocular Visual Odometry. CoRR abs/1607.02555
(2016). http://arxiv.org/abs/1607.02555

[8] Sadayuki Furuhashi. 2021. It’s like JSON. but fast and small. (December 2021).
Retrieved May 9, 2022 from https://msgpack.org/

[9] Google. 2020. FlatBuffers. (January 2020). Retrieved May 9, 2022 from
https://google.github.io/flatbuffers/

[10] Google. 2022. Protocol Buffers. (May 2022). Retrieved May 9, 2022 from
https://developers.google.com/protocol-buffers/

[11] W. Gropp, E. Lusk, A. Skjellum, and R. Thakur. 1999. Using MPI: Portable
Parallel Programming with the Message-passing Interface. MIT Press. https:
//books.google.ae/books?id=DFT1ngEACAAJ

[12] Izzat El Hajj, Thomas B. Jablin, Dejan S. Milojicic, and Wen-Mei W. Hwu. 2017.
SAVI objects: sharing and virtuality incorporated. Proc. ACM Program. Lang. 1,
OOPSLA (2017), 45:1–45:24. https://doi.org/10.1145/3133869

[13] Maurice Herlihy and Barbara Liskov. 1982. A Value Transmission Method for
Abstract Data Types. ACM Trans. Program. Lang. Syst. 4, 4 (1982), 527–551.
https://doi.org/10.1145/69622.357182

[14] Pieter Hintjens. 2013. ZeroMQ: Messaging for Many Applications. O’Reilly
Media.

[15] Albert S. Huang, Edwin Olson, and David C. Moore. 2010. LCM: Lightweight
Communications and Marshalling. In 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan. IEEE,
4057–4062. https://doi.org/10.1109/IROS.2010.5649358

[16] Costin Iordache, Stephen M. Fendyke, Mike J. Jones, and Robert A. Buckley. 2021.
Smart Pointers and Shared Memory Synchronisation for Efficient Inter-process
Communication in ROS on an Autonomous Vehicle. CoRR abs/2108.07085 (2021).
https://arxiv.org/abs/2108.07085

[17] Christian Kurmann and Thomas Stricker. 2003. Zero-Copy for CORBA - Efficient
Communication for Distributed Object Middleware. In 12th International Sympo-
sium on High-Performance Distributed Computing (HPDC-12 2003), 22-24 June
2003, Seattle, WA, USA. 4–13. https://doi.org/10.1109/HPDC.2003.1210011

[18] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March
2004, San Jose, CA, USA. 75–88. https://doi.org/10.1109/CGO.2004.1281665

[19] LLVM. 2022. Clang: A C Language Family Frontend for LLVM. (March 2022).
Retrieved May 9, 2022 from http://clang.llvm.org/

[20] Sun Microsystems. 1987. XDR: External Data Representation standard. RFC
1014 (1987), 1–20. https://doi.org/10.17487/RFC1014

[21] Raul Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robotics 33, 5
(2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[22] OpenCV team. 2022. OpenCV - Official Site. (May 2022). Retrieved May 9,
2022 from http://opencv.org/

[23] Oracle. 2010. Java Object Serialization Specification. (January 2010). Retrieved
May 9, 2022 from https://docs.oracle.com/javase/7/docs/platform/serialization/
spec/serialTOC.html

[24] Python Software Foundation. 2022. pickle - Python object serialization. (April
2022). Retrieved May 9, 2022 from https://docs.python.org/3/library/pickle.html

[25] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng. 2009. ROS: an open-source Robot Operating System. In ICRA
Workshop on Open Source Software.

[26] Aniruddh Rao, Visali Mushunuri, Samar Shailendra, Bighnaraj Panigrahi, and
Anantha Simha. 2017. Reliable robotic communication using multi-path TCP. In
9th International Conference on Communication Systems and Networks, COM-
SNETS 2017, Bengaluru, India, January 4-8, 2017. IEEE, 429–430. https:
//doi.org/10.1109/COMSNETS.2017.7945427

[27] Real-Time Innovations. 2007. DDS: An Open Standard for Real-Time Applications.
(January 2007). Retrieved May 9, 2022 from http://www.rti.com/products/dds-
standard

[28] Muhamad Risqi U. Saputra, Andrew Markham, and Niki Trigoni. 2018. Visual
SLAM and Structure from Motion in Dynamic Environments: A Survey. ACM
Comput. Surv. 51, 2 (2018), 37:1–37:36. https://doi.org/10.1145/3177853

[29] Raj Srinivasan. 1995. XDR: External Data Representation Standard. RFC 1832
(1995), 1–24. https://doi.org/10.17487/RFC1832

[30] Konstantin Taranov, Rodrigo Bruno, Gustavo Alonso, and Torsten Hoefler. 2021.
Naos: Serialization-free RDMA networking in Java. In 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021, Irina Calciu and
Geoff Kuenning (Eds.). USENIX Association, 1–14. https://www.usenix.org/
conference/atc21/presentation/taranov

[31] The Object Management Group. 2015. Data Distribution Service. (March 2015).
Retrieved May 9, 2022 from http://www.omg.org/spec/DDS/1.4/

[32] The Object Management Group. 2020. Extensible and Dynamic Topic Types for
DDS. (February 2020). Retrieved May 9, 2022 from https://www.omg.org/spec/
DDS-XTypes/

[33] The Object Management Group. 2021. Common Object Request Broker Ar-
chitecture, 3.4 edition. (February, 2021). Retrieved May 9, 2022 from
http://www.omg.org/spec/CORBA/

[34] Yu-Ping Wang, Xu-Qiang Hu, Zi-Xin Zou, Wende Tan, and Gang Tan. 2019. IVT:
an efficient method for sharing subtype polymorphic objects. Proc. ACM Program.
Lang. 3, OOPSLA (2019), 130:1–130:22. https://doi.org/10.1145/3360556

93

https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html
https://doi.org/10.17487/RFC8259
http://www.w3.org/TR/WD-xml-970807
http://www.w3.org/TR/WD-xml-970807
http://community.rti.com/examples/flatdata-api
https://doi.org/10.1145/168619.168634
https://doi.org/10.1145/168619.168634
https://doi.org/10.17487/RFC4506
http://arxiv.org/abs/1607.02555
https://msgpack.org/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/
https://books.google.ae/books?id=DFT1ngEACAAJ
https://books.google.ae/books?id=DFT1ngEACAAJ
https://doi.org/10.1145/3133869
https://doi.org/10.1145/69622.357182
https://doi.org/10.1109/IROS.2010.5649358
https://arxiv.org/abs/2108.07085
https://doi.org/10.1109/HPDC.2003.1210011
https://doi.org/10.1109/CGO.2004.1281665
http://clang.llvm.org/
https://doi.org/10.17487/RFC1014
https://doi.org/10.1109/TRO.2017.2705103
http://opencv.org/
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1109/COMSNETS.2017.7945427
https://doi.org/10.1109/COMSNETS.2017.7945427
http://www.rti.com/products/dds-standard
http://www.rti.com/products/dds-standard
https://doi.org/10.1145/3177853
https://doi.org/10.17487/RFC1832
https://www.usenix.org/conference/atc21/presentation/taranov
https://www.usenix.org/conference/atc21/presentation/taranov
http://www.omg.org/spec/DDS/1.4/
https://www.omg.org/spec/DDS-XTypes/
https://www.omg.org/spec/DDS-XTypes/
http://www.omg.org/spec/CORBA/
https://doi.org/10.1145/3360556

	Abstract
	1 Introduction
	2 Related Work
	2.1 Message Passing Middleware
	2.2 Serialization Methods
	2.3 Serialization-Free Frameworks

	3 Background and Motivation
	3.1 Program Paradigm of ROS
	3.2 Program Paradigm of FlatData
	3.3 Program Paradigm of FlatBuffer
	3.4 Challenges for Transparency and Efficiency

	4 Approach
	4.1 SFM Serialization Format
	4.2 Management of Message Life Cycle
	4.3 ROS-SF Framework
	4.4 Discussion

	5 Evaluation
	5.1 Intra-Machine Performance
	5.2 Inter-Machine Performance
	5.3 Application Case Study
	5.4 Applicability Study

	6 Conclusion
	References

