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Abstract—The development of cyber-physical systems is heav-
ily relying on model-driven approaches. After deployment, these
models can be utilised in a Digital Twin setting, acting as virtual
replicas of the physical components and reflecting the behaviour
of the running system in real-time. Complex systems often consist
of numerous models interacting with each other and individual
models may need to be updated after deployment. This means
that new models need to be integrated and swapped during run-
time without interrupting the running system. In this paper, we
propose an approach for model-based Digital Twins to replace
individual models without stopping or halting the operation of
a cyber-physical system. Furthermore, our approach allows to
replace not only individual models, but also update the overall
structure of the interaction of models in the Digital Twin setting.
The use of the proposed mechanism is illustrated through two
case-studies with an agricultural robot prototype.

Index Terms—Model Swap, Model-driven engineering, Co-
simulation, Digital Twins, Functional Mock-up Interface

I. INTRODUCTION

Cyber-physical systems (CPSs) are computing systems in-
teracting tightly with the physical environments. Controllers
implemented in embedded devices have to adjust the actions
of the physical counterparts accordingly utilising the limited
available resources [1], [2]. The development of such a system
is cumbersome as safety guarantees have to be specified
and verified. To overcome this, model driven engineering
approaches have been developed and utilised, allowing to test
and verify the behaviour of systems to be engineered [3], [4].
However, the different parts of a CPS are typically based on
different mathematical basis, and hence modelled in different
tools and environments, giving rise to challenges when it
comes to testing the system as a whole. To tackle such
complexity, co-simulation is often used, where models are to
be packaged in specific ways, and their execution orchestrated
in a coherent joint simulation [5], [6]. The interaction between
the different models is captured by a multi-model, which is just
a high level representation of the entire system to be simulated.
The simulation of these interacting models is coordinated by
a dedicated co-orchestration engine (COE).

With the development of Digital Twins (DT), models be-
came useful beyond the design and development phase of
CPSs [7]. Indeed, a bi-directional exchange of information can
be generated, from the model to the CPS, and vice versa, upon
deployment of the CPS and the DT. This means, models would

not only follow the behaviour of a CPS during its operation in
real-time but also perform verification tasks, predict potential
maintenance requirements, and support runtime improvement
while not necessarily interfering with the actual system [8],
[9].

Co-simulation is further utilised to create modular DTs and
execute their behaviour at runtime [10]. Different components
of a CPS can be modelled in a DT depending on the particular
needs of a user. This also allows to replace test hardware
together with the models themselves, enabling the gradual
introduction of hardware and using hardware-in-the-loop sim-
ulations [11] to improve reliability and performance of the
underlying CPS. During deployment, it is possible that newer –
and better – models become available, due to new information
from the operation of the CPS. These new models may be
able to follow the behaviour of the CPS more accurately and
therefore are required to replace the previous, less accurate,
models. However, as both the DT and CPS run in parallel,
halting the DT would require to interrupt the operation of the
CPS and vice versa. Therefore it is desired that these new
models replace the old ones in the DT in such a way that the
operation of the CPS is uninterrupted.

In this paper, we propose an approach to replace individual
models within a system composed of multiple models, so-
called multi-models, as well as introducing new information
and control flows in the running systems. Specifically, our
contributions include:

1) A model swap mechanism that allows to integrate new or
upgraded continuous models at runtime in a DT setting.
The mechanism proposes a set of general specification
elements needed for dynamic models. The swap can
be performed without interrupting the operation of the
physical system.

2) An approach enabling the change of the structure of the
multi-model and co-simulation during runtime without
a priori knowledge of respective changes before deploy-
ment. This can introduce new information and control
flows in the multi-model.

Our developed mechanism supports upgrading a model struc-
ture where the new replacing structure is not known prior
to the construction of the initial model. In this way our
mechanism does not require a complete specification of the
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dynamic structure beforehand, but rather allows upgrades to
be applied during runtime without interrupting the operation
of the upgraded system. In this way it supports that new
and better models can be developed over time and deployed
at runtime in already operating DTs. It is possible to up-
grade/swap individual models as well as the entire structure
of the interconnected multi-model.

The effects of a swap can be simulated in a stand-alone
setup decoupled from the DT - before being added to the
running DT. In this way providing a two-step approach to
upgrade models in a running DT. Specifically, we provide an
implementation of models following the standard of Functional
Mock-up Interface (FMI) by the Modelica Association [12]–
[14], widely used by industry. Here, individual models are
wrapped in Functional Mock-up Units (FMUs) with clearly
defined interfaces to enable co-simulation.

The rest of this paper is organised as follows. Section II
describes in detail the design of the proposed mechanism and
its implementation, and Section III elaborates the background
of necessary concepts relevant for this paper. Section IV
discusses the experimental setup and the obtained results.
Section V provides a brief overview of the related work in
the area. We conclude our paper and outline future work in
Section VI.

II. THE MODEL SWAP MECHANISM

In the following we first present a formal definition of the
problem and a conceptual overview of the developed model
swap mechanism including a proposed set of general require-
ments to the information needed when specifying dynamic
model structures.

A. Conceptual Overview and Requirements

The overall goal of the model swap mechanism is to
replace a continuous model mk within a DT. The DT can
be defined as a tuple (M,C) where M is a set of models
M = {m1, ...mi, ...mn} and C is a set of connections (ok, ij),
where ok describes the outputs of model mk and ij the input
of mj .

For swapping a model mj (original) at runtime, we first
have to develop and implement a model m′

j (replacement).
Swapping the model itself is as simple as replacing the
respective inputs and outputs, i.e., ensuring the inputs to mj

are also received by m′
j and the outputs of m′

j replace the
outputs of mj in all models receiving information originally
from mj . To decide when the new model should receive inputs,
we define a dedicated step condition indicating that inputs i′j of
m′

j should be connected when the condition is satisfied. When
the stepCondition is satisfied, we can define a new set of
connections C ′ as

∀k ∃(ok, ij) ∈ C : C ′ = C ∪ {(ok, i′j)}. (1)

Importantly, models can run in parallel and process incoming
information. This means that output streams of one model can
be processed by multiple receiving models as inputs. Hence
we do not need to remove the connection between mk and mj

when adding a new connection with input to m′
j as outlined

in Equation 1. However, while a model may have multiple
input interfaces, a dedicated input for a model can only come
from a single other model. This is expressed in Equation 2,
where the old input stream to a model ml is removed, when
it is replaced by the information from m′

j . This replacement
is realised when a dedicated swapCondition is satisfied
and we can thus define the resulting set of connections C ′′ as
follows

∀l ∃(oj , il) ∈ C ′ : C ′′ = (C ′ ∪ {(o′j , il)}) \ {(oj , il)}. (2)

A conceptual overview of the mechanism is illustrated in
Figure 1. An existing DT, consisting of multiple models,
is shown in Figure 1(a) (top). This should be transferred
at runtime to an intermediate (but invalid) DT containing a
new model m′

2 in Figure 1(b) (middle). This is an invalid
configuration as the input i3 is connected to two different
outputs o2 and o′2 and it cannot be expected that the model
itself can differentiate between information coming from those
two outputs. Here c(o2, o′

2) indicates the condition at which
the models should be swapped (swapCondition). Finally
the new instance m′

2 is replacing m2 in Figure 1(c) (bottom).
The replacement is conditionalised by an expression c(o2, o′2)
over a subset of DT variables. The DT in Figure 1(b) may
be seen as an extension of the DT in Figure 1(a) where all
models of the DT in Figure 1(a) are transferred to the DT
in Figure 1(b) with their state preserved. In addition the new
m′

2 is added and the swap condition c specifies the trigger
condition for the original m2 to be replaced by m′

2 and its
new connections. The DT in Figure 1(c) is the resulting DT
after a successful swap of m2 to m′

2.
In general, the condition for a model swap may be more

involved than a simple condition over the output variables of
the respective models as depicted in Figure 1. As an example,
consider the case where a separate observer component may
be needed that enables more elaborate assessment of outputs.

When specifying a scenario for a dynamic model swap, we
identify the following required specification parts:

• swapInstance: are new instances of a model to be
added and eventually replacing an existing model.

• swapConnection: are new connections to and from a
swap model. The new connections of a swap instance are
activated (connected) in a conditional manner for both the
inputs and the outputs.

• stepCondition: defines the condition at which the
swap instance (new/updated model) is introduced to the
overall DT. When the step conditions are satisfied, the
inputs are connected (Equation 1 and Figure 1(b)). The
step condition may, e.g., be needed in situations where the
initial output of a new instance needs to be synchronized
with the output of some other instance before stepping.

• swapConditon: defines the condition for completing
the swap connections and connecting the outputs of the
new model accordingly to the other models of the system.
The new model becomes fully active with both inputs
and outputs connected. At the same time, the inputs
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m2 m3m1

(a)

o1 i2 o2 i3
o3i1

m2 m3m1

m′
2

(b)

o1 i2 o2 i3
o3i1

i′2 o′2

c(o2, o′
2)

m′
2 m3m1

(c)

o1 i′2 o′
2 i3

o3i1

Fig. 1: Conceptual overview of the model swap mechanism:
(a) Initial DT with multiple models, input/output variables and
connections; (b) Intermediate DT with both m2 and m′

2 and
a swap from m2 to m′

2 based on a condition over variables;
(c) Final DT after the swap.

and outputs of the old model are disconnected and the
old model is not executed anymore (Equation 2 and
Figure 1(c)).

• transferInstance: are existing instances present in
the already executing DT that are to be transferred to the
updated DT unchanged and with all state preserved.

• parameterInitialization: is required for all
newly added instances to ensure a continuous operation
when swapping instances, i.e., initial state of a new
instance is similar to the final state of the replaced
instance. This could, e.g., be the initial heading parameter
of a vehicle model, that in case the vehicle model was
updated, would need to be initialized to the current
heading of the existing model.

In addition to the proposed specification constructs, the
internal simulation time of a co-simulation also needs to be
transferred from one scenario to the next one (swapped) to
properly continue an executing co-simulation. This is always
required and thus not explicitly stated by our added specifica-
tion constructs.

Our proposed set of specification constructs can be seen as a
simple and general set of specification requirements for multi-
model-based DTs, that can handle a broad set of cases and
that avoids the complexity of full state serialization. Our added
constructs do not impose new requirements to model instances
but can be handled entirely by the entailing orchestration
component, coordinating the individual models. Furthermore,
the proposed approach does not limit us to generate the exact
same connections as the previous model. This means, the new
specification may introduce different or new control flows (i.e.,

different in- and outputs from and to the swapped model)
without interrupting the ongoing operation of the CPS.

B. Specification Interpretation

A co-simulation generally consists of three phases: initial-
ization, execution/simulation, and termination [15]. During the
initialization phase a COE, able to execute the multi-model
and coordinate the individual simulation models, first loads
and instantiates all specified models. Then it calculates the
initialization order of the interconnected models based on
the topological ordering of model connections - including
handling of algebraic loops using fixed point iteration [16].

Thereafter the COE constructs the initialisation code from
the initialisation graph created in the previous step which
properly represents dependencies between inputs and outputs
of the utilised models. When the specification contains model
transfers (entry modelTransfer), the initialisation code in
the generated swap specification needs to avoid initialising
ports of transferred model instances (as they have been already
initialised). In this situation, only the initialisation of swap
model instances needs to be considered. This is achieved
by pruning the edges representing connections into transfer
instances from the initialisation code. As a result, only the new
models will be initialised, in the proper order, i.e., respecting
the dependencies on other models.

In the execution phase the simulation loop will be executed.
This loop iterates the simulation steps of all models and
gets and sets input and output variables. When the descrip-
tion of the co-simulation scenario, executed by the COE,
contains model swaps, the generated simulation loop code
needs to reflect the stepCondition, swapConditon, and
swapConnection sub-entries.

The stepCondition entry specifies a condition for the
swap instance to enter a state where it may be stepped by the
orchestration engine, i.e., including the model in the simulation
loop. This condition allows a swapped-in model to be initial-
ized (enter and leave state Initialization Mode) and then started
in a controlled manner by a condition over model variables
- including its own newly initialized variables. Additionally,
when this condition is satisfied, the inputs to the new model
are active, i.e., they get values from a specific output of an
existing model (see Equation 1). This condition is useful when
a scenario needs synchronization between newly swapped-
in models and already executing models. The step condition
is evaluated in the simulation loop as a trigger condition in
the sense that once it evaluates to true it keeps this value.
The trigger is evaluated at the start of each simulation loop
iteration. Valid step conditions are expressions build from
standard Boolean, relational, and arithmetic operators applied
to model variables and literal constants as operands.

The swapCondition entry specifies the condition for the
swap instance connections (swapConnections) to become
effective. Importantly, the swapCondition has to occur
together with or after the stepCondition. The swap con-
nections affect the code generated to set linked model variables
(by setXXX), in other words it activates the outputs of the
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new model (see Equation 2). Note, that, for each connected
input port of a model instance the setting of the port may
have to be conditionalised by the swap condition. The rules
controlling this are based on the source of the connection being
from swap instances or not. E.g. for an existing (transferred)
model instance with an input connected from a swap instance,
the setting of that input needs to be guarded by the swap
condition of the connected swap instance. This is due to the
outputs of that swap instance only being enabled once the
swap condition becomes true.

C. Execution Overview

A schematic overview of the model swap execution is shown
in Figure 2. The figure illustrates the interaction between the
orchestration engine and two models, where the simulation
starts in m1 and swaps in m1′. Each simulation loop iteration
starts by executing a transfer point. Here it is checked if a new
swap specification is available in a configured file location and
if so its validity for transfer is checked. If the transfer is valid, a
transfer to a new orchestration interpreter context is performed,
now interpreting the new specification including the swap in
of m1′. This orchestration interpreter context is coordinating
the execution of the individual models in the correct order.
The new context continues the co-simulation with the original
m1 transferred and with m1′ being loaded from scratch.

Since newly loaded models may have separate conditions to
execute individual steps in the simulation, the co-orchestration
engine must be able to advance individual models in time
only if their respective step condition is valid. This means,
that in a given global communication step some models may
progress (valid step condition) while others don’t (invalid step
condition). In Figure 2, the condition in the block for setting
inputs (setXXX) intends to illustrate that setting any input may
have to be guarded by the swap condition or its negation.
This depends on the source port of the connection coming
from a model being swapped in or out. If the source model is
not part of a swap, the input setting may be unguarded. We
slightly misuse the standard UML notation ’opt’ to define a
condition that may be applied to all behaviours in the block.
The block for stepping the models (doStep) illustrates that
stepping a swapped in model is guarded by the step condition,
and stepping the replaced model is guarded by the negation
of the swap condition. The final block for getting outputs
(getXXX) illustrates that outputs are read from a swapped in
model if the swap condition is true, and otherwise from the
original.

III. BACKGROUND AND IMPLEMENTATION

In this section we cover the concepts and tools relevant
for the implementation and experimentation in the context
of this paper. Specifically, we discuss the Functional Mock-
up Interface (FMI) and FMI-based co-simulation, a standard
widely used in industry, as well as Maestro, a co-orchestration
engine developed for co-simulation. Furthermore, we highlight
a data-broker based on the Advanced Message Queuing Pro-
tocol (AMQP) to facilitate exchange of information between

Orchestration m1 m1′

init(time=START)

doTransfer()

optopt [transfer valid]

setXXX()

doStep(time)

getXXX()

looploop [time < end]

interpreter contextinterpreter context

init(time’=0)

doTransfer()

optopt [transfer valid]

setXXX()

setXXX()

optopt [swapCondition / NOT swapCondition]

doStep(time′)

doStep(time)

optopt [stepCondition / NOT swapCondition]

getXXX()

getXXX()

altalt [swapCondition]

looploop [time < end] (time transferred)

interpreter contextinterpreter context

Fig. 2: Swap specification execution overview.

co-simulation (i.e., the Digital Twin) and the corresponding
hardware (i.e., the physical counterpart of the DT). We then
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describe how the conceptual model is realized into a function-
ing extension of Maestro for a multi-model DT.

A. FMI-based Co-simulation

The design and development of CPSs requires expertise
from multiple domains, due to the combination of (networked)
software and hardware components. These components may
depend on different mathematical basis and could be mod-
elled using different tools. As individual models/solvers are
designed and tested in their corresponding environments, the
need arises to test and verify them as a whole. A common
technique to achieve this goal is co-simulation, which couples
individual units and executes them coherently in a joint
simulation. This requires a common standard, describing how
units are packaged and interfaced. In this paper, we adopted the
industry standard Functional Mock-up Interface (FMI) [17],
[18]. Within this standard, simulation units are referred to as
Functional Mock-up Units (FMUs). FMUs implement a set of
c-interfaces (as per the standard), provide a model description
file that describes their parameters, input and outputs, and are
packaged in a specific way.

A co-simulation can be specified through a multi-model
file which describes which FMUs are to be included, the
connections between them, and what values to set the pa-
rameters to. The execution of a co-simulation is carried
out by a co-orchestration engine (COE), which implements
a co-orchestration algorithm. The latter describes how the
COE can interact with the FMUs, in terms of the order of
retrieving outputs and setting inputs, through getXXX and
setXXX functions respectively, and progressing them in time
through the doStep function. Two typical examples of an
orchestration algorithm are the Gauss-Seidel and Jacobi. Both
run a loop from a defined start time until a defined end time.
The former sets the inputs of the first FMU in a co-simulation,
requests a doStep such that said FMU progresses from time
h to h + ∆h, collects the outputs, and proceeds to the next
FMU to be stepped to time h+∆h. The latter, sets the inputs
for all FMUs, requests a doStep that progresses all involved
FMUs to time h + ∆h, collects all outputs, and proceeds to
the next time step. In this paper we use Maestro2 as our
COE, henceforth simply called Maestro, which implements
the Jacobian [19] approach. The Maestro engine consists of
the domain specific language called Maestro Base Language
(MaBL), an interpreter of the language and utilities to assist
in specifying co-simulations in MaBL. It is cross-platform,
based on the JVM, and offers interaction both through a web
interface and command line.

The FMI specification defines an FMU interface to serialize
all state of instances and having this feature generally imple-
mented would ensure that the entire state of an FMU could
be serialized and loaded into the context of a new compatible
(swap) instance. However, such serialization may be difficult
to implement generally with non-trivial FMU implementa-
tions containing, e.g. multi-threading models. Multi-threading
would require serialising and saving state of the executing
thread scheduling context as well as the FMU states. With

the constructs we propose, a user can handle a broad set of
cases avoiding the complexity of full state serialization. Fur-
thermore, the extensions to the Maestro engine fully support
the specified constructs and further allow for dynamic loading
of swap specifications to facilitate workflows where new
models are dynamically developed and integrated into running
simulations. In the following sections we present details of the
realization of our mechanism in the Maestro framework. We
first describe the implementation of the specification format
and then describe the corresponding MaBL translation and
interpretation.

B. RMQFMU: A bridge to the real world

There are cases in which it is desirable to feed data – live
or historical – to a co-simulation. As an example, consider
the case in which a user would like to build a DT using the
aforementioned co-simulation tools. In this scenario, the co-
simulation/DT should be able to connect to the external world,
e.g., to a piece of hardware or a fully-developed robot, and
exchange data back and forth in real-time. To enable such bi-
directional communication, we have previously proposed the
RMQFMU [20], [21], an AMQP based FMU that serves as a
data-broker between a co-simulation and any external system
able to send/receive data through a RabbitMQ server.

RMQFMU can be configured through a set of parameters,
covering the connection to the server, such as username and
password, as well as other parameters that shape its internal
behaviour, such as the maxage among others, which refers
to the age of the data to be considered valid in the DT.
Additionally, it is possible to specify the inputs and outputs of
the FMU through its model description file. The RMQFMU
steps in time when it has valid data from an external source,
and sets its outputs to the received values. Conversely the FMU
will send data to an external listener every time its inputs are
set to a value different to those in the previous time-step.

C. Specification Format

The configuration file for the (multi-model) DT is in JSON
format, with an example given in Figure 3. Such file has
standard data elements to specify model instances and lo-
cations (lines 2–7 in Figure 3), connections (lines 8–17 in
Figure 3), and parameters (lines 29–32 in in Figure 3) for a co-
simulation, which is used to execute the DT. The model swap
mechanism extends the standard format with data elements to
specify the new parts proposed at the end of Section II-A, and
is given in bold in Figure 3, specifically lines 13–28.

The new configuration elements are specified by entries
modelSwaps and modelTransfers. An element in the
modelSwaps entry has a model instance to be replaced
as a key and an object as a value. This object specifies
the swapInstance (new model replacing another model),
a conditional expression (stepCondition) defining when
the model replacement can be started (entering the execution
phase) and have its inputs enabled, and a conditional expres-
sion (swapCondition) defining when the model replace-
ment output connections will be enabled and the replaced

48

Authorized licensed use limited to: Telecom ParisTech. Downloaded on September 24,2023 at 12:35:19 UTC from IEEE Xplore.  Restrictions apply. 



1 {
2 "fmus": {
3 "{x1}": "./fmu1.fmu",
4 "{x2}": "./fmu2.fmu",
5 "{x3}": "./fmu3.fmu"
6 "{x4}": "./fmu2p.fmu"
7 },
8 "connections": {
9 "{x1}.fmu1.o1": [ "{x2}.fmu2.i2" ],

10 "{x2}.fmu2.o2": [ "{x3}.fmu3.i3" ],
11 "{x3}.fmu3.o3": [ "{x1}.fmu1.i1" ]
12 },
13 "modelSwaps": {
14 "fmu2": {
15 "swapInstance": "fmu2p",
16 "stepCondition": "(true)",
17 "swapCondition": "(fmu2p.o2 - fmu2.o2 <1)",
18 "swapConnections": {
19 "{x1}.fmu1.o1": [ "{x4}.fmu2p.i2" ],
20 "{x4}.fmu2p.o2": [ "{x3}.fmu3.i3" ]
21 }
22 }
23 },
24 "modelTransfers": {
25 "fmu1": "fmu1",
26 "fmu2": "fmu2",
27 "fmu3": "fmu3"
28 }
29 "parameters" : {
30 {x2}.fmu2.p1" : 2,
31 {x4}.fmu2p.p1" : 2
32 }
33 }

Fig. 3: Configuration file for co-simulation scenario with
model swap

model may be unloaded and its connections removed. The
step condition and the swap condition apply to the input/output
connections of the exchanged models (swapConnections).
In the example configuration in Figure 3, the new instance is
{x4}.fmu2p. The input connection from {x1}.fmu1.o1
to {x4}.fmu2p.i2 will be enabled by the step condition (in
this case simply true), whereas the output connection from
{x4}.fmu2p.o2 to {x3}.fmu3.i3 will be enabled by
the swap condition. In our example, this is triggered when the
difference between the outputs of the new model fmu2p.o2
and the old model fmu2.o2 is below the specified threshold.
Transferring the state of one model into a new model is done
by utilizing the keyword parameters. Important, however,
only states that are exposed by the old model as, e.g., outputs
or parameters can be transferred as parameters to the new
model.

IV. EXPERIMENTS

In this section, we present two experiments of applying our
developed model swap mechanism, providing insights into the
way the mechanism can be used and the importance of the
separate swap specification parts. In our experiments, we
utilise a DT setting of a field robot prototype. Specifically,
we utilise the desktop version (Desktop Robotti) (Figure 4)
of a large agricultural field robot (Robotti) [22], developed
by AgroIntelli. The Desktop Robotti enables us to experiment
ideas in the lab, at a low cost. The DT consists of a multi-
model executed in a co-simulation environment. With this

setup we update models at runtime and can thereafter observe
changed behaviour of the robot in real-time. First, we retrofit
the robot with a mechanism for time discrepancy detection
between the DT and its physical part. Second, we update the
speed controller of the robot to change the maximum allowed
velocity without interfering with the robots ongoing operation.
This experiment will in addition illustrate the importance of
having the separate step and swap conditions.

A. Desktop Robotti with Time Discrepancy Detection

In our experiment, we use the proposed model swap mech-
anism in the development of a DT for a prototype of an
agricultural field robot to replace a message broker model
with a new version with extended functionality during run-
time. The extended functionality encompasses an orchestration
synchronisation mechanism (OSA) which has been developed
for the Maestro framework [23] that can detect and try to
mitigate observed time discrepancies between a PT and a
DT. The OSA mechanism, has a designated FMU that will
detect discrepancies between simulation and wall-clock time
based on PT and DT having synchronized wall clocks. The
introduced detection FMU provides a new out-of-sync output
that can be used by other FMUs to get informed of any time
discrepancy occurrences and react appropriately.

Fig. 4: The Desktop Robotti.

In the experiment the OSA mechanism enables the DT
to temporarily disable sending any data back to the robot
in case of an out-of-sync situation, caused by, e.g., network
degradation. This to prevent that the robot operates with out-
of-sync data from the DT.

The initial DT of the robot consists of three FMUs. A
data broker, an actuation model, and a vehicle model. The
broker FMU enables the transmission of data into and out of
the co-simulation in real-time. In the experiment, the broker
FMU forwards steering controls (steering angle and speed)
into the co-simulation matching the controls sent to the robot.
In addition, it carries safety control commands (like a safety
stop command) from the co-simulation back to the robot.

In the context of model swapping the most interesting part
concerns the run-time update of the broker FMU RmqFmu,
which is replaced by a new model named RmqFmu2. The swap
requires a state synchronization with the replaced instance.
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Therefore, in the following we will focus our discussion on
the broker FMU replacement.

Figure 5a shows the co-simulation output from the broker
FMU restricted to the steering angle data originating from the
RabbitMQ server. In this experiment, the steering angle is a
sine waveform generated by the robot control software. The
swap specification is provided at simulation time 5sec (vertical
magenta line) and since both step and swap conditions are true,
the swap is instant.

As is clear from the figure, the transition from before the
swap (blue) to after (green) breaks continuity in the steering
angle output. This discontinuity is a result of the instant swap,
and indicates that some form of synchronization is required. If
this swap had been immediately carried out in a real DT setting
it might have caused unforeseen problems since the DT would
be missing a portion of real operational data. A stand alone co-
simulation, including the upgraded broker FMU from the start,
would not have been showing this issue. However, being able
to simulate the real swap in a co-simulation setting, provides
means to investigate and mitigate such issues up front.

To remedy the issue, the swap condition is changed such
that the output steering angle of the existing broker FMU must
match the output of the replacement FMU. The resulting co-
simulation output is given in Figure 5b, and the corresponding
(updated) swap specification part is shown in Figure 6.

In the output it can be seen that after the swap (timestep
5s), the RmqFmu and RmqFmu2 outputs are both following
the sine wave, but the outputs are offset by a constant 5s time
interval. Thus, the original RmqFmu keeps being connected
and is not replaced by RmqFmu2.

The real issue is caused by the RmqFmu having an internal
queue state. When enabling the new RmqFmu2, its queue will
be initially synchronized to contain the next unacknowledged
message from the server. The original RmqFmu may have
messages already in its internal queue that are read and acked
with the server and thus the new RmqFmu2 instance may read
and output an initial message from the server being later than
all (not yet processed) messages in the RmqFmu incoming
queue.

To remedy this issue, we can make use of the step condition
of our specification language, by stating that the RmqFmu2
steering angle must be synchronized with the RmqFmu output
before stepping. I.e., RmqFmu2 will initialize and synchronize
its first message with the RabbitMQ server. Thereafter, it will
start stepping only when the original RmqFmu has processed
any messages in its queue. Finally, we allow RmqFmu2 to
be swapped in at this instant, so the stepCondition
and swapCondition are triggered at the same time. The
resulting output and corresponding specification can be seen
in Figure 5c and Figure 7, respectively.

In the simulation output it can be seen, that at simulation
time 5s when the swap specification is enabled, the output used
until time 10s is from the original RmqFmu (orange). The step
condition of RmqFmu2 is enabled at time 10s and the swap
condition also becomes enabled so the output used is from
RmqFmu2 (green). Notice, that using the steering angle alone

as synchronization state between the FMUs, may in general
be insufficient to provide a continuous switch. Consider, e.g.,
Figure 5c and suppose that RmqFmu2 has been initialized to
the state of RmqFmu at time approximately 13s instead of time
10s. At time 13s the steering angle appears identical to the one
at 10s, so the step condition may be detected as satisfied at
10s and RmqFmu2 will start stepping at this instant causing
a similar problem as in Figure 5a. In this example, we can
conjoin the synchronization condition with, e.g., the message
timestamp or sequence number to become unique to remedy
this potential issue.

B. Limiting the speed of the Desktop Robotti

In our second experiment the maximum speed of the Desk-
top Robotti should be limited to a certain value. To enable
this, we introduce a new speed controller to regulate the
velocity of the robot. This new controller overwrites manual
commands from the operator. This can become relevant when
previous speed have caused problems in the path planning
or travelling of the robot (e.g., muddy slopes require slower
speeds to achieve required traction). The input for the FMU
controlling the speed limit (SpeedControlFmu), is the
current speed of the robot act_speed. This speed limiter
is replaced by a new SpeedControlFmu2 as soon as the
speed of the robot is below a predefined threshold. This could
be achieved by expecting the robot to enter this speed (e.g.,
when it has to slow down in a corner), or by synthesising a
new controller to ensure this target requirement is achieved
as proposed by Nahabedian et al. [24]). In this example,
the stepCondition is true when the new specification is
defined, allowing the new FMU to be simulated and executed
along the FMU scheduled to be replaced. As soon as the
swapCondition has been satisfied, the swapInstance
becomes operational.

Figure 9 highlights the parameters of this experiment. The
blue solid line indicates the desired speed defined by the user.
The speed assigning to the electrical motors of the CPS by
the FMU is illustrated with a solid line in magenta. The
initial specification runs until time step 5.9 (blue background)
when the new specification is defined. The new specification
is operational immediately but does not swap the model yet as
the swap condition is not reached until time step 10.5 (orange
background). At this point, the actual speed (act_speed)
of the CPS, illustrated as solid orange line, drops below the
swapCondition (illustrated as red dashed line). By satis-
fying the swapCondition, the model is replaced and the
actuated control is limited by the new SpeedControlFmu2,
overwriting the desired user input. This swap is illustrated by
the green background. From the time of the model swap, the
goal is to change the speed limit to a maximum of 30cm/s.
This is indicated by a green dashed line.

From our measurements, one can follow that the model
swap is performed after the speed of the system is below the
desired threshold and the new model is utilised as expected
afterwards, i.e., under the speed cap enforced by the new
controller SpeedControlFmu2.
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Fig. 5: (a) Instant swap of RmqFmu for RmqFmu2. Start and swap conditions true. RmqFmu angle output before swap (blue),
RmqFmu2 immediately connected output after swap (green). (b) Conditional swap of RmqFmu for RmqFmu2. Start condition
true and swap conditional. RmqFmu angle output before swap (blue), RmqFmu stays connected output after swap (orange).
(c) Conditional swap of RmqFmu for RmqFmu2. Both step and swap conditional. RmqFmu angle output before swap (blue),
RmqFmu stays connected output after swap (orange) until swap condition where RmqFmu2 gets connected (green).

1 "stepCondition": "(true)",
2 "swapCondition": "(RmqFmu.steering_angle == RmqFmu2.

steering_angle)",

Fig. 6: Second configuration of the RmqFmu model swap.

1 "stepCondition": "(RmqFmu.steering_angle == RmqFmu2.
steering_angle)",

2 "swapCondition": "(RmqFmu.steering_angle == RmqFmu2.
steering_angle)",

Fig. 7: Final configuration of the RmqFmu model swap.

1 "stepCondition": "(true)",
2 "swapCondition": "(act_speed < 15)",

Fig. 8: Configuration of the SpeedControlFmu model
swap.

V. RELATED WORK

Developing Cyber-physical systems is a cumbersome task
involving modelling physical interactions of software systems
as well as the interaction among different networked, em-
bedded systems. One of the key approaches to reduce the
development complexity for CPSs is Model-driven Engineer-
ing (MDE) [25]. With MDE, systems are developed using
compositions of models. This allows for rapid adaptations of
developed systems by replacing individual models, leading to
a blurry boundary between development and deployment [26]
leading to DevOps (development and operations). Here, sys-

tems are designed to be improved and updated during runtime.
Ahmed et al. [27] survey the state-of-the-art for dynamically
updating traditional software systems after deployment. A
specific problem arises when models need to be updated
in CPSs, where the computational system has to directly
interact, verify, and control physical properties whether they
are of discrete or continuous nature [2]. Over the past years,
dedicated DevOps approaches have been developed to consider
the co-evolution of models and deployed systems [28], [29].
Dobaj et al. [30] propose a DevOps approach to continuously
improve DTs for CPS.

Jørgensen [31] proposed structural dynamic models, the
creation of larger models by combining simple, small-scale
models. In addition, allowing adjustments of their parameters
through control mechanisms. Several extentions have been
proposed over the years: Ören [32] considered the discon-
tinuities in the differential equations of models and how to
model them, while Barros [33] proposed taxonomies to model
multi-models. Yilmaz and Ören [34] introduce multi-models
specifically for multi-agent systems. Uhrmacher [35] intro-
duces an implementation-independent formalism for models
whose description entails the possibility of changing their own
state and behaviour utilising transition functions as part of the
models. However, the approach is not directly applicable to
CPSs and the continuous domain.

Nilsson and Giorgidze [36] proposed functional hybrid
modelling as an approach to non-causal modelling to switch
between pre-defined models. At around the same time, Zim-
mer [37] developed equation-based language to explicitly
define adaptations in variable-structure systems, i.e., mod-
els where equations change during the time of execution.
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Fig. 9: Speed adaptation through replacing the underlying model at runtime. Blue solid line defines the velocity desired by the
user (vusr), the red solid line indicates the velocity defined by the controller (vctrl), and the solid orange line illustrates the
actual speed of the CPS (act_speed). Blue background from time 0 to 5.9 utilises the original model. The new specification
takes place at time 5.9 (orange background), defining the model swap. The model is swapped at time 10.4 when the speed is
below the desired threshold. The horizontal dashed lines indicate the swapContition in red (i.e., lower threshold to perform
the model swap), and the new maximum speed allowed for the new SpeedControlFmu2 in green.

Mehlhase [38] proposes to utilise models with multiple, differ-
ent modes. She further introduced a Python-based framework
allowing to switch between different modes of the model.
The framework utilises end values from the previous mode
to initialise the new mode when switching between them. In
contrast, we allow to dynamically change the model structure
and introduce new models and underlying model structures at
runtime without suspending the simulation. Karner et al. [39]–
[41] explores swapping models in the co-simulation in order
to exploit the trade-off between simulation time and accuracy.
This trade-off arises as more complex models require more
time to be simulated and executed while faster models lack ac-
curacy. In a similar way, Lavin et al. [42] swap more complex
models for simpler models, using statistical approximation,
at runtime. These swaps are performed without halting or
interrupting the running simulation. However, they do not
elaborate on the applicability of their approach in digital
twin settings. Furthermore, the discussed approaches focus
on model replacement alone without potential changes to the
underlying control flow in the simulation of the multi-model.

Replacing or swapping models in MDE, after systems
have been deployed, is not entirely new. The work on mod-
els@run.time [43] has introduced the idea of replacing individ-
ual models while the actual system is executed. This allows for
runtime adaptation of the behaviour of the respective system.
This enables to provide assurance for the behaviour of self-
adaptive systems [44]. The need for explicit mechanisms and

approaches to implement this runtime change is highlighted by
Bennaceur et al. [45] or Götz et al. [46], among others. The
recent and very extensive survey on models@run.time [47]
highlights the challenge of replacing models during runtime.
Fouquet et al. [48] propose an approach to replace models at
runtime in CPS but focus on memory utilisation and reboot
delay when adding new firmware. They do not explicitly
consider the dynamics and continuous change to which a CPS
is exposed.

Heinzemann et al. [49] present a modeling language which
allows to specify platform-independent models of hierarchical
re-configurations. Their reconfiguration protocol guarantees
atomicity, consistency, and isolation properties and real-time
constraints by design. Furthermore, it can be utilised to verify
properties in discrete and continuous physical environments.

When developing self-adaptive systems which will undergo
changes after their deployment, the underlying adaptation
needs to be defined and implemented as well. Goldsby et
al. [50] propose different levels of requirements engineer-
ing and respective processes including a dedicated level for
adaptation scenarios and adaptation infrastructure engineering.
Braberman et al. [51] propose a reference architecture for
configuration and behaviour of self-adaptive systems. More
recently, Weyns and Usman [52] bring forward a formally
founded approach to develop and implement self-adaptive
systems.

Trusting autonomous adaptive systems able to change their
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own behaviour is often challenged due to the limited pre-
dictability of the systems [53]. Zhang and Cheng [54] intro-
duces formal models for adaptive systems enabling verification
of the systems state before and after the adaptation. They
focus on verification of software behaviour resulting from
collaborative of multiple software components. In a similar
way, Han et al. [55] proposed a refinement-based modelling
and verification approach for self-adaptive systems. Formal
methods for a self-adaptive system and specifically runtime
verification of its properties has been well researched [56]–
[60]. Recently Finkbeiner and Passing [61] proposed formal
methods to synthesise compositional systems. The composi-
tional system generates contracts and certificates, allowing to
formulate process requirements for the full system. Bernarde-
schi et al. [62] use formal verification to find acceptable
intervals of values for design parameters in the development
of mechatronics systems. Temperekidis et al. [63] propose an
approach beyond monitoring individual models. They present
a runtime verification module for the master algorithm and
co-simulation tool, allowing them to monitor the predicates
and events of all involved models of a co-simulated system.
Hansen et al. [64] verify that an orchestration algorithm
respects all contracts related to the simulation tool’s imple-
mentation and how to synthesize such tailored orchestration
algorithms.

A lot of work has gone into ensuring safety requirements
for CPS when changing the behaviour of the system using
model-swapping. LaManna et al. [65] propose an approach
to define criteria for when a system can safely change its
current behaviour. In such a situation, the system can disregard
its current obligations and change its behavior to satisfy the
new specification. Ghezzi et al. [66] further propose to check
the correctness of updates. However, they assume that the
system being executed eventually reaches a state in which
they can safely update the current behavioural models. To
overcome this shortcoming, Nahabedian et al. [24], [67] not
only proposed to check the correctness of the future behaviour
but also to automatically generate a controller to guide the
system into a safe transition state. More details on control-
theoretical software adaptation can be found in an extensive
survey by Shevtsov et al. [68].

Bellman et al. [69] highlight the importance of self-
integrating systems and their ability to master continuous
change. They argue that models need to be able to replace
models during execution. With changing models and underly-
ing software, we also have to reconsider our testing approaches
in a dynamically changing world. Bertolino and Inverardi [70]
highlight the challenges and outline approaches to tackle them.
We argue that not only models need to be replaced but also
model structures need to be adaptable at runtime and tested
accordingly.

Recently, Gomes et al. [18] present the FMI 3.0 standard
and specifically discuss the different types of clock-based
simulations. They discuss synchronous clocked simulations
and scheduled execution, where the former utilises a com-
mon clock for all events while the latter relies on real-time

simulation of black-box models.
Finally, Brockhoff et al. [71] discuss the potential of process

mining for process discovery and even process prediction.
While this is not directly related to adapting simulation models
and replacing models at runtime, the outlined approaches could
be utilised to automatically identify changes in processes and
trigger a model exchange dynamically.

VI. CONCLUSION AND FUTURE WORK

Digital Twins, as virtual replicas of cyber-physical systems,
can follow the behaviour of their physical counterparts in
real-time, and thus provide support for a range of operations
such as monitoring, prediction, maintenance, learning, re-
configuration, and self-adaptation, among others. However,
the realization of such systems is not trivial, partly due to
the fact that DTs may run alongside their CPS for a long
time, resulting in a divergence between the real (actual) and
modeled behaviour of the system. Such divergence can be
due to inaccurate models, where the error may accumulate
over time, but also due to the wear and tear of the physical
system or the changes in the environment that render what
initially were adequate models useless. In either case, there is
a clear need of mechanisms that allows users to update models,
preferably during runtime, to avoid costs related to the entire
shutdown and restart of the whole system. In this paper we
tackle precisely this problem, and propose such mechanisms
that enable us to update the DT during runtime, in a controlled
manner. We investigate the utility of these mechanisms in
two case-studies concerning update of models in a DT for
a prototype of an agricultural robot. Our results show that the
swap of models can be done in a controlled manner, leaving
the system in a stable state after the swap has taken place.

Nevertheless, there are several issues that need to be tackled
in future research. Among others, we have to incorporate
safety and security aspects in the DevOps cycle, to ensure
the updates operate correctly and within defined safety re-
quirements [72], [73]. Furthermore, we have observed in the
results a deviation between the Digital Twin and the CPS, and
we speculate that this is introduced due to communication
delays and inaccurate models. In future research it is crucial
to close this reality gap between models and physical world,
and provide bounds for the tolerated error, such that the whole
system reacts more accurately and in a timely manner. To
achieve this, we require an interplay between runtime model
calibration [74] and synchronisation [75] of the DT and the
CPS.
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