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ABSTRACT
Deep Neural Networks (DNNs) have demonstrated impressive per-
formance on many machine-learning tasks such as image recogni-
tion and language modeling, and are becoming prevalent even on
mobile platforms. Despite so, designing neural architectures still
remains a manual, time-consuming process that requires profound
domain knowledge. Recently, parameter tuning servers have gath-
ered the attention of industry and academia. Those systems allow
users from all domains to automatically achieve the desired model
accuracy for their applications. While the entire process of tuning
and training models is performed solely to be deployed for infer-
ence, state-of-the-art approaches typically ignore system-oriented
and inference-related objectives such as runtime, memory usage,
and power consumption. This is a challenging problem: besides
adding one more dimension to an already complex problem, the in-
formation about edge devices available to the user is rarely known
or complete. To accommodate all these objectives together, it is
crucial for tuning system to take a holistic approach to parameter
tuning and consider all levels of parameters simultaneously into
account. We present E���T���, a novel inference-aware parameter
tuning server. It considers the tuning of parameters in all levels
backed by an optimization function capturing multiple objectives.
Our approach relies on inference estimated metrics collected from a
dedicated emulation server running asynchronously from the main
tuning process. The latter can then leverage the inference perfor-
mance while still tuning the model. We propose a novel onefold
tuning algorithm that employs the principle of multi-�delity and
simultaneously explores multiple tuning budgets, which the prior
art can only handle as suboptimal case of single type of budget.
E���T��� outputs inference recommendations to the user while
improving tuning time and energy by at least 18% and 53% when
compared to state-of-the-art systems.
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1 INTRODUCTION
Deep Neural Networks (DNN) are increasingly popular both in
academia and industry [20, 29], adopted across a variety of ap-
plication domains, including speech and image recognition, self-
driving vehicles, face-recognition, genetic sequence modeling, natu-
ral language processing, e-health,etc. Several public cloud providers
o�er native support to deploy, con�gure and run them, with tools
to (semi)automatically drive the DNN processing pipeline. The
choice of the DNN hyperparameters (e.g., number of hidden layers,
learning rate, dropout rate, momentum, batch size, weight-decay,
epochs, pooling size, type of activation function, etc.) is critical.
DNNs require careful tuning of the hyperparameters. If executed
correctly, it o�ers major boosts in performance [17, 52]. However,
miscon�gurations can easily lead to wrong models and hence bad
predictions [25, 44].

Commercial platforms (i.e., Google Vizier [23], Amazon Sage-
Maker [35]), as well as on-premises solutions (i.e., Auto-Keras [28])
help deployers by o�ering tuning services to mitigate (possibly
avoid) miscon�guration. Such tuning services assist users to achieve
the target model accuracy. However, they lack input regarding the
inference phase, the ultimate goal of the tuning process. Such tun-
ing services typically output the identi�ed optimal hyperparam-
eters, paired with the model resulting from training using such
parameters. As the trained model is already given as output, the
information of which optimal parameters were identi�ed during
tuning is no longer useful for the users. If users plan on retraining
the model with a di�erent dataset, nothing guarantees that the
optimal parameters remain the same across di�erent datasets. In
fact, the next step for the user after having a fully trained model is
to deploy it for inference use.
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The deployment of inference model is not straightforward: it
requires a vast domain knowledge, as well as extra experimentation,
in order to �nd the best environment for achieving the desired
inference performance. Even if the user has only a speci�c edge
device available for model deployment, it is still crucial to either
(1) con�gure the system parameters of this device, or (2) take the
model inference performance on that speci�c device into account
on the tuning process. However, the most common case is that the
tuned model might be deployed across di�erent edge devices and
having these con�gurations suggested can assist users to take the
most out of their tuned models.

Regarding tuning trials, a common approach is to de�ne a budget
allowed for each trial.This is typically de�ned in terms of epochs,
dataset, or time. Using a reduction factor will exclude unpromising
trials and increase the budget of promising ones, resulting in a frugal
usage of resources. This is also indeed the case when compared
to �xed budged tuning or even algorithms using any budget [51].
However, the current existing budgets (e.g., epoch or dataset based)
only consider one dimension, which means we are still using either
the entire dataset or the full number of epochs for each trial.

On top of choosing a given edge device or a speci�c con�gura-
tions, a critical point is the number of samples in which inference
should be applied to. Although single sampled inference is com-
mon in practice, there are scenarios (see §3.4) where multi-sample
inference is bene�cial. In those scenarios, the batch size must be
tuned carefully, as too-large values can lead to saturation. For in-
stance, in a server scenario where each inference query contains N
samples arriving at �xed frequency, the user should know what is
the optimal way to split these samples. A similar pattern happens
in a multi-stream system, where single sample inference queries
arrive randomly following a Poisson distribution. In this case, if
the optimal batch size is identi�ed, aggregating samples for multi-
sampled inference could improve the overall mean response time
of the system.

We propose E���T���, a novel holistic edge-based tuning sys-
tem capable of taking inference objectives into account during the
tuning of hyperparameters. E���T��� produces more useful in-
formation such as the optimal con�gurations of edge device for
inference. Users can then directly deploy their trained model for
inference without further actions. As shown later, this approach
reduces tuning runtime by 20% and energy by 50% if compared to
T���.

To summarize, the main contributions of this paper are:
(1) E���T���, a novel inference-aware tuning system, striking

the right balance between model performance and inference
latency.

(2) Compared to other approaches, E���T��� covers multi-
parameters tuning in a (non-hierarchical) onefold solution,
combining multiple layers of optimization.

(3) We introduce a multi-budget approach for the training tri-
als which reduces their runtime but maintains the level of
accuracy necessary for e�cient convergency.

(4) We demonstrate performance gains on runtime and energy
measurements using state-of-the-art workloads.
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Figure 1: Performance counter events collected during the
forward phase of training and inference.

2 PARAMETER TUNING PRIMER
This section discusses how a parameter tuning job operates, the
di�erent types of tuning budget typically considered by existing
systems, and their limitations. Then, by means of an image clas-
si�cation motivating example, we show how the tuning server
providers and the �nal users can both bene�t from the tuning
phase if the process considers di�erent types of parameter and the
inference phase.

2.1 Tuning Deep Learning Job
A tuning deep learning job takes as input a given workload, a set of
parameters to be tuned, and outputs the set of optimal parameters’
values found together with the model which trained these values.
In this context, we refer to workload as a tuple pairing a model
and dataset. Typically, DNN workloads are used for training (i.e.,
learning) or inference (i.e., prediction). Training is the process of
�nding the model parameter’s based on a given algorithm and
objective. Once a model is trained, the inference phase deployes
the model perform prediction of data with the same structure used
in the training but with unseen values. Before training or inference,
there is a set of hyperparameter and system parameters which have
to be de�ned and have high impact on model performance both in
terms of accuracy and runtime.

A tuning DL job consists of several trials, where each trial con-
sists of the training/inference using a set of value for these parame-
ters. At the end, the winning trial (i.e., parameters leaving to best
solution) is outputted to the user.

Before the training phase can even start, several other param-
eters must be con�gured, e.g., the hyper- and system-parameters.
Hyperparameters will in�uence the training process or the model
architecture. The system parameters include the type of hardware
used, number of CPU cores allocated, GPUs, etc.

Auto-tuning tools can �nd the optimal hyper/system con�gura-
tions while also training the model. The training trials explore the
search space of possible parameter’s con�gurations. Hence, tuning
a single workload consists of multiple training trials, each divided
into epochs. One epoch consists of a full pass on the entire dataset,
i.e., forward and backward phase for all the batches. As training
trials follow the stochastic gradient descent algorithm [8], each
epoch involves one forward and one backward pass of the entire
input dataset. For ease of processing, the dataset is split into smaller
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Figure 2: Model hyperparameters tuning.
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(b) Inference

Figure 3: Training hyperparameters tuning.

batches, each one propagated forward and backward once during
an epoch (i.e., iteration). Once the model training is completed, it
can be used for evaluation on an unseen chunk of the training data
which is put aside at the beginning of training for this purpose (i.e.,
20% of the full dataset in our case). Finally, once the model reaches
the expected accuracy, it is deployed in production with unknown
data.

The following design options exist to consider inference while
tuning: (1) rely on the forward phase of training, (2) o�oad the
model to inference device and collects, or (3) simulate the inference
devices in the tuning server. In theory, the inference is equivalent
to the forward phase of training with the only di�erence being on
the model weights. However, in practice this is not the case as the
memory utilization during training is much higher than for the
inference. In fact, while training, the weights are constantly being
updated and kept in memory for faster access. Instead, during the
inference phase the optimal weights are known and only consist of
constant values. Finally, training is performed on relatively large
batches of images, whereas inference is often done on a single
images.

We show that relying on the forward phase to make predictions
about the inference phase is not the best approach, by collecting
hardware performance counters [3] during the di�erent phases. We
used three platforms: (1) an ARMv7 Processor rev 4 (v7l) with 4
cores and 4GB RAM, (2) a Raspberry Pi 3 Model B+ (v1.3), 4 cores,
1 GB RAM, and (3) an Intel(R) Core(TM) i7-7567U CPU with 16GB.
Figure 1 shows CPU andmemory related events for the AlexNet [27]
model with CIFAR10 [31] dataset during the forward phase of train-
ing and inference performed with the trained model. We observe
how CPU-bound events (e.g., cpu.*, context.switches) are con-
sistent between the forward phase and inference, while memory-
bound events (e.g., cache-*, L-*, LLC-*, branch mispredictions
requiring pipeline �ushes and fetching of new instructions) are not.
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(b) Batch = 1024

Figure 4: Training system parameters tuning.
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Figure 5: Inference system parameters tuning.

Hence, one is left with the options of o�oading the model to
actual edge devices, or simulating such devices in the tuning server.
The �rst approach gives more precise results, at the cost of addi-
tional data transfers, and limits on the number of available devices.
We settle to simulate the edge devices for inference. We show later
(§ 5) how E���T��� quickly evaluates a large search space without
adding an overhead as the combination of optimizations proposed
in our approach actually reduces tuning time. Moreover, the error
of the simulation results on inference with respect to the actual
measurement in edge devices is small (at most 20% in our experi-
ments).

2.2 Tuning Budget
To optimize the otherwise costly search process of �nding the
set of best parameters, technics such as early-stop [32] or multi-
�delity [30] budgets exist. With multi-�delity budget, the promising
range of values is identi�ed using a model approximation (subset
of the training data, fewer epochs) which is cheap to evaluate by
de�nition.

A training trial consists of a certain number of epochs runs
applied on a given dataset. These runs explore the search space:
the optimal con�guration is from the winning trial. Hence, the
majority of trials waste precious resources, and it is critical to
quickly discard non-promising ones. Trials run on a given budget,
de�ned in terms of (1) number of epochs, (2) portion of training
dataset, and (3) duration. The tuning algorithm de�nes a min/max
budget for the resources allowed for tuning, and a reduction factor
which determines the fraction of con�guration that continues in
the next iteration.

Example. Consider the number of epochs. Assume the minimum
number of epochs is 1, maximum 16, and the reduction factor is 2.
We start tuning with 16 trials initialized on the minimal budget (i.e.,
1 epoch). The next iteration will consist of 8 trials with 2 epochs,
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then 4 trials with 4 epochs, 2 trial with 8 epochs and a �nal iteration
containing only one trial with 16 epochs. Similar reasoning applies
for other budgetable parameters, i.e., dataset fraction or time.

2.3 Tuning Space by Motivating Examples
The training phase of DNN workloads involves hyperparameters
set before optimizing the model’s parameters. Setting the values
of hyperparameters can be seen as model selection, i.e., choosing
which model to use from the set of possible models. Hyperparam-
eters are often set by hand, selected by some search algorithm,
or optimized by some auto-tuner tool [23, 28, 35]. DNN models
support many types of hyperparameters: related to the structure
(model), as well as those for the training or the inference phases.
System con�gurations (and related system parameters) greatly im-
pact the tuning and inference performance, and must be taken into
account We describe each of these parameters type and motivate
their relevance by means of a practical example using the tuple
ResNet and CIFAR10 as workload tuned to reach at least 80% model
accuracy.

2.3.1 Model Hyperparameters. The structure of the neural network
itself involves numerous hyperparameters in its design, including:
size and nonlinearity of each layer, number of hidden layers, weight
decay, activation sparsity, weight initialization, and preprocessing
input data. The numeric properties of the weights can be con-
strained in some way, and their initializations have a strong e�ect
on model performance. Finally, preprocessing of the input data can
also be important for ensuring convergence [13, 13, 15].

We show how the number of layers impact the training (Fig-
ure 2a) and inference (Figure 2b) performance in terms of runtime
and energy. The performance does not directly relate to the number
of layers, nor is it straightforward to predict. For the inference
phase we show the throughput (i.e., images per second) and the
energy consumption per single image inference in Joules (J). In
this example, the throughput is inversely proportional to the num-
ber of layers, but the energy consumption is proportional to it.
This trade-o� between runtime performance and energy costs can
be exploited during tuning if this process is inference-aware by
simulating the inference phase during tuning and considering the
inference-related results in the objective function.

2.3.2 Training Hyperparameters. When training a neural network,
the resulting model depends not only on the chosen structure but
also on the training method used to set the network’s parameters.
The training method itself can have many hyperparameters. Here
we describe the hyperparameters of mini-batch gradient descent,
which updates the network’s parameters using gradient descent on
a subset of the training data. Some examples of this type of hyper-
parameter are learning rate, loss function, mini-batch size, number
of training iteration, and momentum. Figure 3a shows the impact
of the batch size on training runtime and energy consumption. We
observe how high batch sizes values (i.e., 1024) result in high train-
ing times and energy consumption, while others (i.e., 256 and 512)
produce similar training times but di�erent energy consumptions.
This indicates that when energy is a concern, it should be explicitly
taken into account while tuning. This observation supports the
need of a multi-parameter tuning approach.

2.3.3 Inference Hyperparameters. In scenarios where multiple im-
ages are available, multi-image inference can be bene�cial. In this
case, the hyperparameter batch size must be de�ned for the in-
ference phase and its value has a direct impact on performance.
Figure 3b shows the throughput (i.e., images per second) and the
energy consumption per single image inference in Joules (J) when
doing single-inference (i.e., one image at a time) andmulti-inference
(i.e., multiple images at a time). As show, both throughout and en-
ergy improve by performing multi-inference in comparison with
single-inference. However, the choice of how many images to in-
clude in each batch to process at any given time is critical as the
performance gains can quickly reach saturation and start decaying
if the chosen batch size is too high.

2.3.4 System Parameters. The con�gurable resources of the under-
lying computing infrastructure executing the training and inference
(e.g., memory, CPU cores, CPU frequency, number of GPUs, etc.)
are the system parameters. Typically, the hyperparameter optimiza-
tion �xes the same system parameters for each trial, although they
might bene�t from di�erent con�gurations. Moreover, while model
and parameters are tuned for model accuracy, its impact on the
inference performance is not considered. Figure 4 and Figure 5
show the impact of system parameters on the training and infer-
ence phases by varying the number of GPUs and the number of
CPU cores.

Figure 4a and Figure 4b show the training results for batch 32
and 1024, respectively. We note that for smaller batch sizes, neither
runtime nor energy are improved by increasing the number of GPUs.
Actually, we observe the opposite, as the performance considerably
decreases by up to 120%. With larger batch sizes, results become
even harder to predict. The running performance improves but not
proportional to the number of GPUs, while the energy consumption
actually increases even in the cases where runtime is lower. These
results highlight the trade-o�s to consider while tuning, specially
if energy consumption is a concern for the user.

Regarding inference, Figure 5a and Figure 5b show similar re-
sults. For single image inference, increasing the number of cores
does not increase throughput (as expected) and increases energy
consumption. For multi-image inference, the throughout grows
proportionally to the number of cores but the energy consumption
of 4 cores is 33% higher than for 2 cores although the throughput is
only 9% higher. Therefore, when energy savings are more important
than inference performance, it becomes harder to �nd the sweet
spot solution.1

3 EDGETUNE: SYSTEM DESIGN
In this section we present the overall architecture of E���T���
as well as a description of its main components, how they work
individually to take care of speci�c aspects covered by the system,
and how they communicate and interact with each other.

3.1 Overview
E���T��� consists of two main components: Model Tuning Server
and Inference Tuning Server. The user gives as input 1) the workload
to be tuned (i.e., dataset and model), 2) the set of hyperparameters,
1In the shown example, the most energy-saving solution requires 2 CPU cores, which
is however not the one with highest throughput.
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Algorithm 1: E���T��� complete algorithm.
1 Function model_tuning_server:
2 inf_results = {};
3 train_metrics = [];
4 for p in model_train_params.search_space() do
5 if not inf_results[p] then
6 inf_results[p] = async inference_server(model);
7 p_result = trial(model, data, p);
8 train_metrics.add(p_result.metrics());
9 model_params =

train_obj_function(train_metrics).params();
10 return model_params, inf_results[model_params];
11 Function inference_server:
12 inf_model = model.random_init();
13 inf_metrics = [];
14 for p in inf_params.search_space() do
15 set(p);
16 p_result = inf_model.predict(data);
17 inf_metrics.add(p_result.metrics());
18 return inf_obj_function(inf_metrics).params();

3) the set of system training parameters, 4) the set of inference
training parameters, 5) the tuning objective (e.g., tuning duration or
energy, model accuracy), 6) the inference objective (e.g., throughput,
energy), and 7) the choices tuning algorithms. Each set of param-
eters to be tuned comes together with another set containing the
corresponding range of values which each parameter can assume.
As for outputs, the users receive the optimal trained model with
respect to the tuning objective as well as the optimal system con-
�gurations to be used for inference deployment with respect to the
inference objective.

Algorithm 1 shows the overall logic of this system as well as
how the components interact with each other. Di�erent from the
hierarchical tuning, bothModel and Inference servers jointly explore
model parameters and inference system parameters in a parallel
and pipelining fashion – so called onefolding approach. For any con-
�guration, theModel Server �rst uses a tuning algorithm to explore
the accuracy related parameters which are then nested with the
inference system parameters. The Inference server then takes over
this nested part of tuning, which can use a di�erent algorithm from
the model server. As there are multiple con�gurations to be tried
out, the model server can parallelize its tuning process. To avoid
(frequent) stalling from the dependency to the inference server, the
inference server pipelines its tuning process. The asynchronous
communication among the model and inference server is thus the
key for E���T���. Figure 6 illustrates this process for 3 values of
model and inference parameters.

In more details, model tuning server chooses the architecture
structure as input to the Inference Tuning Server, which �rst checks
if the required information is already available for the de�ned ar-
chitecture and model hyperparameters. This step consists of a table
look-up based on historical data stored from previously processed
trials. If results are already available, the Inference Tuning Server

1

1 2 3

2

1 2 3

3

1 2 3

Model Server

Inference Server

Model Parameter Inference Parameter Idle

Figure 6: Example of model and inference tuning servers
with 3 values of parameters each.

immediately returns it and no further action is required on this
component. Otherwise, the inference-based tuning starts on the
given architecture, model hyperparameters, and the set up infer-
ence parameters. In this case, the optimal con�guration is stored
and given back to the Model Tuning Server which takes it into ac-
count to update its metric of interest. This process is repeated for
all the trials until the �nal result is reached and given as output to
the user.

Objective. We assume that the objective function given to the In-
ference Tuning Server component does not relate to model accuracy
as the Model Tuning Server already takes care of this aspect (e.g.,
maximize model accuracy as the objective of the tuning server and
minimize inference energy for the inference server). Therefore, as
soon as the values of a given trial are de�ned, the Inference Tuning
Server can asynchronously be started with arbitrary weight values,
and the inference tuning process can take place in parallel to model
tuning. Moreover, some types of parameters such as training batch
size and number of epochs do not a�ect the inference phase. Con-
sidering this, the Inference Tuning Server results can be reused for
di�erent parameters as long as they do not a�ect the architecture
structure. Since we explicitly divide the hyperparameters into these
two types (i.e., model and training), we can easily identify for which
parameters the results can be reused.

Tuning algorithm. The Model Tuning Server and Inference Tun-
ing Server components are implemented such that the user can also
individually specify which tuning algorithm to be used by each
of them (e.g., Random Search [7], HyperBand [32], BOHB [22]).
For instance, a user could choose to run the Model Tuning Server
following the HyperBand approach while Inference Tuning Server
following GridSearch. One setup where this con�guration could
make sense is where the range of inference parameters is not too
large. In this case, trying all the parameters for inference would
give more accurate results without necessarily a�ecting the overall
tuning duration.

3.2 Architecture
Figure 7 depicts the architecture components of E���T��� design
and its main work�ow. E���T��� consists of twomain components
which we describe bellow in details (i.e., model and inference tuning
servers). The model tuning server can be executed using both CPUs
or GPUs, while the inference server is only CPU based. The reason
for the later is that, �rst, the inference server simulates edge devices
which typically do not contain any GPU card, and, second, the infer-
ence tuning is straightforward and therefore does not require any
accelerator. Regarding the model tuning server on the other hand,
although both scenarios are supported, it performs signi�cantly
better when used with GPUs. We also support multi GPUs training
and tuning, which can improve the performance in some case but
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for others it does not scale as one might expect. As already shown
in Figure 4, increasing the number of GPUs used for tuning does
not positively a�ects runtime in every case. Therefore, the system
parameters tuning takes care of �nding the optimal architecture
con�gurations for each tuple of workload and parameter’s values.

3.3 Model Tuning Server
The Model Tuning Server receives as input the hyper (e.g., number
of layers, batch size, number of epochs) and system (e.g., number of
cores, memory, CPU frequency) parameters to be tuned regarding
model training, together with the workload of interest (i.e., dataset
and model) and the metric of interest (e.g., runtime, energy) and the
optimization function (e.g., min, max, threshold). Following a given
search algorithm, the tuning server de�nes the search space of the
given parameters and starts performing training trials on these
values. For each trial, the Inference Tuning Server is asynchronous
called which in parallel computes the information of the optimal
inference system parameters together with its runtime and energy
consumption. It is important that the Inference Tuning Server re-
sult comes back before the end of the ongoing trial, as it contains
crucial information for the overall optimization function of the
Model Tuning Server. This constraint is guaranteed as the entire
Inference Tuning Server duration is contained in the duration of
a Model Tuning Server training trial and, therefore, also does not
add any overhead to the main process. Once the result is received
and the training trial is �nished, the resulting metrics from both
cases can be combined and considered together on the decision of
promising con�gurations.

3.4 Inference Tuning Server
The Inference Tuning Server receives as input the model structure
and model hyperparameter values de�ned by the trial which called
it, together with the hyper (i.e., batch size) and system (i.e., number
of cores, memory, frequency) parameters to be tuned regarding
the inference phase. In this case, before starting the parameter
search, the system veri�es whether the optimal con�gurations are
already known for the given model structure based on historical
data. The feature of looking into historical data allows us to improve
performance since it avoids retuning architectures and parameters
twice, with the cost of a small storage overhead [42]. If this is
the case, then the found parameters together with their metric
of interest (e.g., runtime and energy consumption) are directly
returned and no further action is required. Otherwise, a process
similar to the one described forModel Tuning Server takes place but
this time with focus on inference instead of training. Following a
given search algorithm (e.g., BOHB [22]), the tuning server de�nes
the search space of the given parameters and start performing
inference trials on these values. The optimization function de�ned
by the user is applied to the performed trials and the optimal set
of parameters is then identi�ed, saved for later usage and returned
together with the metrics of interest.

As this server takes as input the network structure from the
Model Tuning Server, the de�nition of model hyperparameters are
already taken care of in this step. Therefore, the focus of this com-
ponent is on the inference hyperparameters and system parameters
for the inference phase. Each workload might have particular hy-
perparameters to be tuned but batch size is a hyperparameter of
common interest and therefore considered for all workloads by a
subcomponent named Batching. Figure 8 illustrates two scenarios
where the Batching subcomponent is crucial for inference perfor-
mance. The �rst scenario is a server where each query contains N
samples arriving at �xed frequency. In this case, it is important to
de�ne how many samples should be processed at a time to achieve
the expected performance. The second scenario is a multi-stream
where single sample queries arrive randomly, following a Poisson
distribution. In this case, aggregating the individual samples to per-
form batch inference can also optimize the overall mean response
time and therefore Batching is also relevant.

Finally, the systems parameters for inference are the secondmain
aspect playing a role in the inference throughput and therefore has
to be carefully considered. As we have seen earlier describing the
motivating examples, di�erent batch sizes might require di�er-
ent system con�gurations. Therefore, in order to reach optimal
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following 3 di�erent searchings algorithms.

inference tuning performance, the batch size and the system con-
�gurations are tuned in combination. Although this adds an extra
step to the main tuning process, this component runs in parallel to
the training trials which in principle takes much longer than the
inference trials. Moreover, in the worse case, the inference trial is
performed for the �rst training trial of a given con�guration and
all the further training trials will reuse these results.

4 ONEFOLD TUNING ALGORITHM
We describe here the proposed onefold tuning algorithm and its
novel features, including search algorithm, training budget and
objective functions.

4.1 Hierarchical vs. Onefold approach
The process of tuning hyper and system parameters can be solved in
two di�erent ways: 1) non-hierarchically (i.e., onefold), where both
parameters are tuned together in an one-tier manner, and 2) hierar-
chically, initially tuning the hyperparameters, and then the system
parameters are tuned only for the set of optimal hyperparameters
values found by the �rst tuning step. The main drawback of non-
hierarchical tuning approaches lies in the search space size, as it
increases signi�cantly when two sets of parameters are considered
together. However, this approaches allows to take the system pa-
rameters impact on model training and inference performance into
account during the process of �nding hyperparameters. Opposed
to that, hierarchical approaches treat these two types of parameters
independently and tune the hyperparameters in a manner which
does not consider the strong dependency of hyper and system pa-
rameters. Figure 9 depicts the execution �ow di�erence between
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Figure 11: Flow of trials for 3 budget approaches: epochs,
dataset, and multi-budget.

hierarchical and non-hierarchical (i.e., onefold) tuning approaches.
We implement a prototype for each strategy, and compared the
results to support our assumption.

4.2 Search Algorithm
The core of parameters tuning is the search algorithm (e.g., Random
search, HEBO, BOHB, HyperBand). Each of these algorithms follow
a speci�c strategy to de�ne the search space, the most basic ones for
parameter search being via random and grid search. Random search
is backed up by a variant generator which randomly picks a value
in the given interval, while grid search exhaustively tries all the
possible values. Optimized algorithms (i.e., Bayesian Optimization
HyperBand - BOHB-) implement early termination of bad trials and
uses Bayesian Optimization to improve the parameter search. In
practice, each type of parameters to be tuned may be speci�ed to
follow its own searching algorithm. For instance, a user can choose
to tune the number of cores following random search and the batch
size following BOHB in the same tuning run. In our context, while
user can freely choose the strategy, the default behavior of the
current prototype picks the BOHB strategy for all parameters. We
focus on BOHB as our novel strategies (i.e., multi-budget) can easily
be integrated.

Figure 10 shows the parameter tuning problem with three di�er-
ent searching algorithms: grid search, random search, and BOHB.
Each point represents a speci�c parameter con�guration. Warmer
colors indicate a performance following a given metric of interest.
The circled numbers from 1 to 9 indicate the training trials per-
formed in each case. We observe that the trials following BOHB
concentrate on the most promising regions of the search space,
di�erently than grid and random search. Given these results, the de-
fault behavior in our current implementation is that all parameters
are tuned following the BOHB strategy.

4.3 Training Trial Budget
We design a novel multi-budget approach and compare it against
an epoch based and a dataset based budget.

The state of the art tuning algorithms are based on the concept of
multi-�delity [30], e.g., successive halving, using low-�delity data
to explore the entire system performance and then high-�delity
data to exploit the optimal con�guration. Speci�cally, the small
amount of budget is used to explore a large number of con�gura-
tions and then big amount of budget is spent on a small number of
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Figure 12: Model accuracy and training time convergency over the trials execution with the 3 budget approaches. Workload:
Resnet18 on CIFAR 10.

Algorithm 2: Trial multi-budget algorithm.
1 Function trial(model, data, hyperparameters, it):
2 epochs = min(min_epochs*it, max_epochs);
3 data_frac =min(min_data*it, 1);
4 data = data.subset(data_frac);
5 for epoch in epochs do
6 model.train(data);
7 return model;

promising con�gurations. Typically, budgets are de�ned through
training iterations, i.e., epoch, or training data size. While most of
the prior art overlooks the impact of di�erent budgets, [16] shows
that an appropriate choice of budget type can improve the tuning
e�ciency signi�cantly. In epoch based approaches, the number
of epochs performed in each training trial is proportional to the
current iteration (i.e., epochs is equal to two times the iteration
level). In a dataset based approach, only one epoch is performed
per training trial but the amount of data used in each trial is pro-
portional to the iteration level (i.e., percentage of dataset used is
equals to min(1, iteration_id*0.1)).

Finally, the multi-budget approach combines both strategies,
i.e., each training trial uses a number of epochs and a chunk of
dataset which is proportional to its iteration. By combining both
approaches, we have a trial which does not take as long as of we
would use the entire or run for a �xed number of epochs. At the
same time, we run it for long enough or with enough number of
samples to make the accuracy of a trial representative. Figure 13
depicts the trial execution �ow of the 3 above described budget
approaches.

In the multi-budget approach (see Algorithm 2), we start with the
minimum number of epochs and minimum fraction of the dataset.
Then, in every new iteration, the budget for number of epochs and
portion of the dataset grows simultaneously and proportionally to
the current iteration. For instance, if we start with minimum epochs
equals to 2 and minimum dataset fraction 10%, the next iteration
will consist of 4 epochs on 20% of the dataset, the third iteration
will take 6 epochs on 30% of the dataset, and so on. Although both
dimensions grow simultaneously, their maximum limits are set

independently. Once the maximum limit for one of the dimension
is reached, the maximum value is used further and the other one
continues to grow until both reaches their limits. In our example, if
the maximum number of epochs is 10, then from the 5C⌘ iteration
onward, the number of epochs is �xed to 10 and the dataset keeps
growing until the 10th iteration when both dimensions reach their
maximum values. In summary, the budget for both epochs and
dataset is given by min(max, iteration_id*min_fraction)).

Figure 12 shows the model accuracy convergency over the trials
for each of the three approaches described above. In this example
we can see that the epoch based approach reaches the target ac-
curacy (i.e., 80%) within few trials but the execution time per trial
is extremely high. On the other hand, the dataset based approach
has a very low execution time in comparison to the others but the
model accuracy does not go higher than 40% even after 100 trials.
Finally, the multi-budget approach presents the perfect balance
between these two approaches, reaching the target accuracy with
more trails than the epoch based approach but with signi�cantly
lower trials execution times. Hence, we show how the multi-budget
approach is the most appropriated for tuning servers as it �nds
the sweet-spot between trial duration and accuracy. Having this
balance is crucial: the trial duration is critical for the overall per-
formance of the process, but the model accuracy given by a trial
needs to be representative enough to avoid advancing the training
on non-promising trials.

Now, combining this multi-budget approach with the halving
process of algorithms such as BOBH would mean that, besides of
the speci�cations above, the algorithm de�nes a reduction factor
represented by [. This reduction factor de�nes the fraction of hy-
perparameters which continues to the next iteration at the end of
each cycle. For instance, if [ = 2, then half of the con�gurations
being considered continues to the next iteration at each cycle. This,
combined with the multi-budget strategy allows the tuning to try
many con�guration at low cost and, more importantly, spend more
time and resources in the most promising con�gurations.

4.4 Objective Functions and Metrics
TheModelTuning objective function is to maximize model accuracy
while still considering tuning and inference performance.
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Table 1: Workloads used for experiments.

Type ID Model Dataset Datasize Train Files Test Files
Image Classi�cation IC R��N�� CIFAR10 163 MB 50.000 10.000
Speech Recognition SR M5 S����� C������� 8.17 GiB 85.511 4.890

Natural Language Processing NLP RNN AG N��� 60.10 MB 120.000 7.600
Object Detection OD YOLO COCO 19 GB 164.000 41.000

As tuning is composed by several training trails, optimizing
training performance directly impacts the tuning performance. In
current implementation, performance can be de�ned either in terms
of runtime or energy consumption. Therefore, the �nal optimiza-
tion function of this server to minimize the metric of interest (time
or energy) de�ned as the ratio performance to accuracy:

(1) A0C8> = CA08=8=6_C8<4⇤8=5 4A4=24_C8<4
022DA02~

(2) A0C8> = CA08=8=6_4=4A6~⇤8=5 4A4=24_4=4A6~
022DA02~

In the case of the Inference Tuning Server, the objective function
is de�ned only in terms of inference performance (i.e., inference
runtime or energy consumption). This mean that the objective
function is set to minimize the metric of interest de�ned either as
runtime or energy consumption of the inference phase alone.

Those objective function and metrics are used out-of-the-box, as
our implementation already takes care of collecting and con�guring
all the necessary metrics. However, both the objective function
and the metric of interest are con�gurable and can be easily set
up. For instance, if the user would like to focus on the inference
performance only then another metric of interest could be de�ned
where the training performance is not included.

4.5 Implementation Details
The E���T��� prototype is implemented in Python (v3.6.8), and
it consists of 817 LOC. We release its code to the research commu-
nity, available from https://github.com/isabellyrocha/edgetune. We
leverage the Tune [34] Python library from Ray (v1.4.0) to reuse ex-
isting implementations of state-of-the-art search algorithms. Tune
is used for experiment execution and hyperparameter tuning, in
particular for tuning schedulers based on di�erent optimization
algorithms (i.e., BOHB).

For the training and inference of workloads we rely on Py-
Torch [41] (v1.9.0). This is an imperative-style high-performance
deep learning Python library, supporting data structures for multi-
dimensional tensors and mathematical operations over these ten-
sors. We rely on torchaudio (v0.7.0) for speech recognition work-
loads and on torchtext (v0.10.0) for natural language processing
ones. Finally, for image classi�cation and object detection work-
loads, we use torchvision (v0.8.1+cu101).

CUDA support for PyTorch [12] allows these tensors to run on
an NVIDIA GPU [1]. We exploit this option, using CUDA (v11.3)
combined with NVIDIA driver (v465.19.01) to accelerate the train-
ing part of our framework and therefore further optimize overall
tuning duration.

5 EVALUATION
This section presents our extensive experimental evaluation of the
E���T��� prototype, including di�erent considerations from 3
state-of-the-art application domains.

5.1 Experimental Setup
We begin by detailing our experimental setup, including testbed,
baseline, workloads, and as well as the considered parameters and
their ranges.

Testbed.We use Titan RTX GPU, Turing architecture with 24GB
of Memory and 7.5 compute capability running CentOS Linux (v7.9).
Power metrics are collected using the library PyRAPL (v0.2.3.1) [2]
which is a software toolkit to measure the energy footprint of a
host machine along the execution of a piece of Python code.

Baseline. Our baseline system (i.e., T���) uses the tuning of
hyperparameters ignoring all system parameters and the inference
phase. For a fair comparison, we con�gure Tune to use the same
searching algorithm as E���T��� (i.e., BOHB).

Workloads. Table 1 summarizes the properties of the selected
workloads for evaluation including image classi�cation, speech
recognition, and natural language processing problems. The CI-
FAR10 [31] dataset consists of 32x32 colour images labeled in 10
mutually exclusive classes. Speech Commands [47] is an audio
dataset of spoken words designed to help train and evaluate key-
word spotting systems. AG News [24] is a collection of news articles
gathered from more than 2000 news sources spanning 1 year of
activity. Common Objects in Context (COCO) [37] is a large-scale
object detection, segmentation, and captioning dataset featuring 5
captions per image and 80 object classes.

Training Hyperparameters. We study the impact of the train-
ing batch size, i.e., the number of samples are aggregated to perform
the training. The range of values considered in our setup vary from
32 to 512, across all the workloads.

Model Hyperparameters. The model hyperparameter consid-
ered for ResNet was number of layers, with the possible values being
50, 34, and 18. In the case of M5 (i.e., the speech recognition case),
the model hyperparameter considered is the embedded dimension,
assuming values 32, 64, or 128. For the RNN model (i.e., for natural
language processing), we tune the stride parameter, as it maps to
the amount of movement over the image or video. For example, if
a neural network’s stride is 1, the �lter moves one pixel, or unit, at
a time. In our setup, the stride value vary from 1 to 32. Finally, for
the YOLO model we tune the dropout rate with values varying from
0.1 up to 0.5. Dropout is a regularization technique that randomly
sets activations in a neural network to 0, preventing models from
over�tting.
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Figure 13: Results of the 3 budget approaches, namely, epoch, dataset, and multi-budget, for 4 di�erent workloads.
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Figure 14: Tuning duration and energy overhead of E��
��T��� in comparison with Tune baseline which does not
make use of the inference tuning server component.

System-parameters. Regarding training system parameters,
we consider the number of GPUs to be used by the trials which can
vary from 1 to 8. For the inference system parameter, we consider
number of CPU cores and inference batch size. The inference batch
size, from 1 to 100 in our experiments, represents the number of
samples used during inference.

Overall, following the convention of parameter tuning literature,
we choose a wide range of values for the parameters to be tuned
aiming at covering the most common cases. To keep our evaluation
consistent, we apply the same ranges for each workload presented.
The optimal parameters might vary from workload to workload.
In practice, these ranges could be adapted to more speci�c require-
ments without a�ecting the general concepts here demonstrated.
When the domain knowledge is applied, such ranges can be nar-
rower but lead to unfair comparison. One can thus see our ranges
as a kind of worse case scenario.

5.2 Tuning Budget Choice
Given the three possible budget options mentioned earlier (i.e.,
epoch, dataset, or multi-�delity), we evaluate our novel multi-
�delity approach against the former two. Figure 13 compares these
approaches under the tuning and inference perspectives, respec-
tively. For workload IC, for instance, we notice that the inference
con�guration of these 3 approaches are very similar.This is ex-
pected: there are di�erent possible optimal solutions, and we run
enough trials such that each approach can converge to one of these.
However, there are signi�cant di�erences regarding tuning runtime
and energy consumption. Overall, we observe that the epoch based
approach is better than the dataset approach in terms of runtime but
worse for energy consumption. Instead, the multi-budget approach
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Figure 15: Error of throughput and energy consumption
estimated by the Inference Tuning Server component in
comparison with actual values collected on edge device.

performs consistently better (i.e., shorter runtime and smaller en-
ergy consumptions) than the other two in both aspects. Taking
OD workload as an example, multi-budget results into a signi�ant
reduction in turning run time and energy (roughly 50%), compared
to the budget of epoch and dataset. This suggests our novel ap-
proach can reach comparable inference results to state-of-the-art
approaches while being more e�cient.

5.3 Inference Tuning Server
Next, we study the overhead and precision of the Inference Tuning
Server, one of E���T���’s key contributions.

Overhead. Figure 14 shows the overhead of the Inference Tuning
Server component of E���T��� with respect to T��� which does
not have such a component integrated. For instance, we can observe
that for both the workload IC and OD, the tuning duration and
energy are reduced by 18% and 53%, respectively. This indicates that
the performance gains achieved by considering a multi-objective
optimization function compensates the minimal overhead of the
Inference Tuning Server component. One of the objectives of the
optimization function used in our implementation is to minimize
the duration on training trials which indirectly also minimizes the
overall tuning time.

Precision. Figure 15 uses a box-and-whiskers representation to
show the percent error between the runtime and energy estimated
by the Inference Tuning Server component and the actual metrics
collected on an edge device of the simulated con�gurations. The
percent error (i.e., PE) is:

%⇢ =
⇣ |4<?8A820;_E0;D4�4BC8<0C43_E0;D4 |

4<?8A820;_E0;D4

⌘
G100,

where 4<?8A820;_E0;D4 is the metric collected on the edge device
and 4BC8<0C43_E0;D4 is the metric collected in simulation mode.
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Figure 16: Impact of runtime v.s. energy based objective functions on the tuning e�ciency and inference performance.
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Figure 17: EdgeTune v.s. HyperPower: tuning e�ciency and inference performance.

5.4 Objective Function: runtime vs. energy
Beyond model performance, runtime and energy performance are
E���T���’s main concerns. hence, we have implemented E��
��T��� using two di�erent versions of objective function, one
optimized for runtime and one for energy, respectively. Figure 16
shows a comparison between the utilization of these two functions
under the tuning and inference perspectives, respectively. Zooming
into the workload IC and OD, we note that tuning time is slightly
lower and the energy is higher for the function based on runtime
than for the energy based function.

Moreover, when comparing the inference results of the con�g-
urations suggested in each case, both throughput and energy are
higher for the runtime function than for the energy one. Although
the di�erences are not signi�cantly large (at most 20% for runtime
and 29% for energy), we can notice the focus of the functions af-
fecting the direction of the achieved results. We explain this by
the fact that energy is often strongly correlated with runtime and,
by optimizing runtime we are also indirectly optimizing energy
consumption.

5.5 Other Tuning Systems
There are several state-of-the-art systems related to the approaches
we propose in this paper. Here, we discuss in more details how they
di�er from each other from a conceptual point of view. Among
those systems, we speci�cally chose HyperPower to perform a quan-
titative comparison with E���T���. We perform this evaluation in
terms of tuning duration and energy as well as inference through-
put and energy consumption of model resulting from the tuning
phase. Please note that, di�erent than E���T���, HyperPower does
not output to the user any parameter regarding the inference phase.
To make the inference comparison fair, we use the same param-
eters outputted by our approach in both cases. Figure 17 depicts
these results. We observe that the tuning duration and energy of

HyperPower are up to 39% and 33% lower than E���T���, respec-
tively. The additional tuning duration and energy consumption
stem from additional space of the inference con�guration explored
in E���T���. However, the inference results of E���T��� are at
least 12% higher in terms of throughput and 29% lower when it
comes to energy consumption. The inference awareness character-
istic of E���T��� is re�ected in these results, coming at a given
tuning cost but achieving the overall objective which HyperPower
is not designed to.

6 RELATEDWORK
There is an exhaustive number of state-of-the art systems [14, 19,
48] covering the parameter tuning problem for machine learning
and deep learning. Table 2 lists the most relevant ones to E���T���.
We distinguish between systems that support CPU or GPU process-
ing nodes, if they support hyper, system, or architecture parame-
ters, if their objective focus is on tuning, training, or inference, and
whether they exploit the multi-image inference aspect.
Parameters Tuning. In this context, tuning is the process of choos-
ing optimal parameters for a given workload (i.e., model and work-
load). The process of tuning parameters is crucial to �nd the best
model performance of a given application. However, the best model
performance can signi�cantly vary depending on the performance
de�nition, typically based on the interests of users. Moreover, the
tuning process itself can take di�erent perspectives into account
such as searching algorithms [5–7], supported tools [39], and type
of processing nodes (e.g., GPUs, CPUs, FPGAs). Therefore, there
are many proposed approaches and tools addressing this problem.
Inference-Aware Tuning. In the process of tuning, the users
de�ne their objective function which is often to maximize model
performance in terms of accuracy [18, 40]. However, some users are
also interested in model performance from other perspective such
as the inference throughput. In this case, the tuning servers must
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Table 2: State-of-the-art systems related to hyper and system parameter tuning.

Parameter Objective Multi-SampleSystem CPU GPU Hyper System Architecture Tuning Training Inference Inference
ChamNet [14] 3 3 7 7 3 7 3 3 7
DPP-Net [19] 3 3 7 7 3 7 3 3 7
FBNet [48] 3 3 7 7 3 7 3 3 7
HyperPower [45] 7 3 3 7 3 3 3 7 7
MnasNet [46] 3 7 7 7 3 7 3 3 7
NeuralPower [9] 7 3 7 7 3 3 3 7 7
ProxylessNAS [10] 3 3 7 7 3 7 3 3 7
E���T��� 3 3 3 3 3 3 3 3 3

be inference-aware, meaning that either empirical or estimated
measurements of the inference runtime is included in the objective
optimization function under consideration.
Multi-Objective Tuning.Multi-Parameter Tuning consists of tun-
ing servers which simultaneously consider more than one dimen-
sion in their objective optimization functions [11, 26]. For instance,
when both themodel accuracy and inference throughput are equally
relevant, then the optimization must follow a multiple criteria deci-
sion making strategy [36]. Sometimes these objectives are con�ict-
ing, which makes the decision making process not trivial and lead-
ing to multiple possible Pareto optimal solutions [43]. HyperPower
leverages Bayesian optimization combined with some enhance-
ments such as early termination of the training at the objective
evaluation. Similarly to our approach, HyperPower also focus on
optimizing the power consumption of the tuning process. However,
no inference objective is taken into account for this approach as
quantitatively demonstrated in our evaluation section.
Neural Architecture Search (NAS). Neural architecture search
(NAS) [21] is a technique for automating the design of arti�cial
neural networks (ANN), a widely used model in the �eld of ma-
chine learning. NAS has been used to design networks that are
on par or outperform hand-designed architectures. Methods for
NAS can be categorized according to the search space [38], search
strategy [4, 33] and performance estimation strategy used [50].
E���T��� also includes NAS since model hyperparameters are
included in the tuning process which can also de�ne the structure
of the architecture. ChamNet, for instance, proposes Chameleon, an
e�cient neural network architecture design methodology. These
systems di�ers from E���T��� as they focus speci�cally in design-
ing the model’s architecture. The output also targets a speci�c type
of network, performing very well in contrast to other state-of-the-
art networks but lacking the generality proposed by our approach,
specially in terms of inference awareness.
Multi-Image Inference.When themodel has all parameters tuned,
it is deployed to be used for inference on unseen data. Data arrives
in batch or streaming form [49]. Although the most common ap-
proach for the inference phase is to apply the model for one data
point at a time, this phase considers the hyperparameter batch size
which determines how many data points can be aggregated before
performing model inference. When the inference batch size is set
to a value higher than one, then multi-image inference is being
performed.

To the best of our knowledge, E���T��� is the only system
supporting CPUs, GPUs, parameter tuning, multi-objective tuning
as well as multi-sample inference.

7 CONCLUSION
This paper presents the design, implementation and evaluation
of E���T���, a novel edge-based parameter tuning framework
that simultaneously considers multiple parameters and is inference-
aware. To achieve the onefold tuning, E���T��� is composed of
tuning and inference servers which can asynchronously and in
parallel explore large space of model and inference system pa-
rameters. By tuning multiple interlaced parameters (i.e., model,
hyper and system parameters), E���T��� achieves higher model
accuracy and energy-e�ciency inference at a lower tuning cost,
compared to the existing solutions, e.g., non-inference aware tun-
ing and hierarchical tuning. We design a novel multi-budget tun-
ing algorithm that �exibly exploits the pros and cons of di�erent
budget types, overcoming the limitations of state of the art multi-
�delity tuning algorithms. We extensively evaluate E���T��� on
four popular AI workloads and three edge systems, against dif-
ferent combinations tuning solutions. The evaluation shows that
E���T��� can achieve 20% tuning improvement on runtime and
50% on energy. E���T��� is available to the research community
at https://github.com/isabellyrocha/edgetune.
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