
Self-Adaptive Mechanisms for Misconfigurations in
Small Uncrewed Aerial Systems

Salil Purandare
Urjoshi Sinha

Dept. of Computer Science
Iowa State University

Ames, IA, USA
{salil,urjoshi}@iastate.edu

Md Nafee Al Islam
Jane Cleland-Huang

Dept. of Computer Science
University of Notre Dame

Notre Dame, IN, USA
{mislam2,janehuang}@nd.edu

Myra B. Cohen
Dept. of Computer Science

Iowa State University
Ames, IA, USA

mcohen@iastate.edu

Abstract—Small uncrewed aerial systems, sUAS, provide an in-
valuable resource for performing a variety of surveillance, search,
and delivery tasks in remote or hostile terrains which may not be
accessible by other means. Due to the critical role sUAS play in
these situations, it is vital that they are well configured in order
to ensure a safe and stable flight. However, it is not uncommon
for mistakes to occur in configuration and calibration, leading
to failures or incomplete missions. To address this problem,
we propose a set of self-adaptive mechanisms and implement
them into a self-adaptive framework, CICADA, for Controller
Instability-preventing Configuration Aware Drone Adaptation.
CICADA dynamically detects unstable drone behavior during
flight and adapts to mitigate this threat. We have built a prototype
of CICADA using a popular open source sUAS simulator and
experimented with a large number of different configurations.
Experimental results show that CICADA’s adaptations reduce
controller instability and enable the sUAS to recover from
a significant number of poor configurations. In cases where
we cannot complete the intended mission, invoking alternative
adaptations may still help by allowing the vehicle to loiter or
land safely in place, avoiding potentially catastrophic crashes.

Index Terms—self-adaptive software, configurability, uncrewed
aerial vehicles

I. INTRODUCTION

Small Uncrewed Aerial Systems1 (sUAS) are increasingly
deployed into unknown environments to support diverse mis-
sions – often in response to natural or man-made disasters
such as floods, earthquakes, or fires [2], [3]. In such scenarios,
the operators need to dispatch the sUAS as expeditiously and
safely as possible to detect survivors, deliver food and water
or medical items, or provide critical intelligence to human
rescuers. In order to be deployed safely and reliably, sUAS
must be configured properly for their intended purpose. Mis-
configurations can be caused unintentionally by inexperienced
users or even maliciously by external bad-actors [4], either
of which can impact the stability, safety, and success of the
flight. To be effective in such environments, sUAS need the
ability to detect the effects of unfavorable configurations as
they emerge, evaluate the impact of those configurations on
the stability of their operations, and ultimately to self-adapt
their behavior to mitigate the problem.

1Terminology recommended by the USA Federal Aviation Authority [1].

Almost all commercial sUAS flight controllers include
basic failsafe mechanisms for detecting and responding to
system failures such as low-battery, loss-of-signal, or geofence
breaches. However, these failsafes are quite limited in their
scope. Current sUAS are not inherently well-equipped to
detect and mitigate the effects of configuration errors, which
is especially problematic when they are to be deployed in
emergency response scenarios.

A key to system dependability of a sUAS is the ability
of its controller to prevent the vehicle from moving in un-
expected ways. This can be partially achieved by tuning sets
of parameters which work together to constrain the physics
of the vehicle. Therefore, most sUAS controllers provide a
wide range of configuration parameters that can be tuned
and customized for different vehicles, flying conditions, or
even individual missions (e.g. when speed is of the utmost
importance vs. battery preservation). Initial configurations are
typically set by sUAS manufacturers, but can be reconfigured
by remote pilots in command (RPICs) or sUAS technicians
prior to flight, often as part of recalibrating the flight controller
when prearming checks fail. It is also possible to modify
configurations at runtime. The runtime exposure of parameters
is meant to provide flexibility, but incorrectly modifying them
can lead to errors that have been labeled as input or range
specification bugs [5], [6]. These are parameter settings that
may cause the vehicles to become unstable, leading to crashes,
deviations from the flight path, or unresponsiveness.

Kim et al. have shown that slight changes to parameter
settings at runtime can lead to critical flight failures [5]. They
suggest restricting certain parameter settings to guard an RPIC
from incorrectly changing parameters during flight. However,
a quick search of user forums shows that users are changing
parameters, and that use of incorrect parameter settings is
a common problem (e.g., [7]). Furthermore, there is little
preventing a malicious actor from accessing and modifying
control parameters and recent work [8], [9] has reported faults
in controllers which lack checks on incorrect parameters.

While some research has explored the ability to detect or
predict combinations of parameters, or to find root causes
of faults [6], [10], they lack a proposed solution for sUAS

pre
-pr

int

dependability. One of the most popular software controllers,
PX4 [11] has over 1,200 parameters, many with a wide range
of potential values, all of which can be manipulated. The
possible search space for finding failing scenarios is simply too
large to cover exhaustively, especially given that failure cases
are vehicle and situation (e.g. mission or use case) dependent.

In this work we take a different approach to sUAS depend-
ability. We investigate whether it is possible to automatically
adapt to and recover from failures, allowing critical missions to
complete in the event of misconfiguration-related flight insta-
bility. We propose extending a common self-adaptive, MAPE-
K framework to improve dependability [12]–[15]. Many self-
adaptive systems monitor and adapt based on quality attributes
such as time and bandwidth, rather than discrete events (e.g.
failures). However, prior research has also proposed self-
adaptation for failure avoidance [16], [17].

Recently, Braberman et al. [15] presented a MAPE-K refer-
ence architecture for uncrewed aerial vehicles which considers
different types of adaptations; those which change system con-
figurations to adapt the vehicle’s capabilities and those which
adapt the behavior of the vehicle through flight commands.
In this paper, we propose adaptations of both types, achieving
adaptation through modification of configuration parameters
and by sending flight commands. We further introduce a
method of monitoring flight stability outside of standard
controller error reporting with the aim to automatically detect
emergent instabilities and to trigger adaptations.

Following on from Braberman et al. we have built a frame-
work called CICADA, or Controller Instability-preventing
Configuration Aware Drone Adaptation with a prototype for
experimentally validating our approach. CICADA subscribes
to and monitors time-series data representing the vehicle’s
physical state (e.g. its roll, pitch, and yaw) and detects sig-
nificant deviations from the expected norm. When deviations
are detected, CICADA triggers an immediate adaptation.

In a series of experiments on the widely used Gazebo
flight simulator, we first explore part of the PX4 control
parameter space to understand how parameter changes impact
the sUAS during flight. We find a wide range of behaviors,
including many failure-causing configurations. Utilizing this
analysis, we evaluate CICADA’s adaptation mechanisms. Our
first approach returns to a predefined baseline configuration
and attempts to continue the mission. When this fails we
invoke other adaptations that abandon the mission but should
increase stability: (a) loitering in place, or (b) landing in place.

The contributions of this work are as follows:
1) We systematically explore a large parameter space of

PX4, a popular flight control software to determine the
impact of configurations on flight behavior.

2) We built a configuration-aware self-adaptive framework,
CICADA, for sUAS which is triggered by monitoring the
vehicle’s physical state during flight.

3) We conduct a series of experiments evaluating CICADA’s
ability to avoid flight failures caused by configuration
problems, and for mitigating the risk posed by dangerous
configurations.

In Section II we present some motivation for our research
and an overview of CICADA and then Sections III and IV
describe the experiments we conducted and report results.
We then discuss our findings in more detail (Section V) and
point to some interesting follow on investigations. We close
by discussing related work (Section VI) and finally presenting
our conclusions and future work in Section VII.

II. THE CICADA FRAMEWORK

To motivate CICADA we point out that configuration errors
can be introduced in many different ways. First, hobbyists and
technicians build and configure sUAS; however, this does not
always work out as intended, and the resulting configurations
can reduce flight stability and result in crashes [7]. Second,
software bugs in sUAS applications can inadvertently
cause inappropriate configurations. Third, the sUAS may
be configured to fly in certain environmental conditions or
with a specific payload; but may be launched under different
conditions without appropriate reconfiguration. Finally, despite
attempts to secure the communications infrastructure, a hacker
might change the sUAS0 configuration during flight [18]. As
a simple real-world example, we recently took delivery of
new sUAS from a highly qualified manufacturer. However,
during initial tests the sUAS experienced intermittent takeoff
failures resulting in several crashes, and the root cause was
ultimately attributed to a configuration error in one of the
flight controller parameters. These examples suggest that
understanding the configuration space, monitoring the sUAS’
behavior during flight, and re-configuring when needed can
potentially increase sUAS dependability.

A. CICADA Overview

CICADA is based on MAPE-K [19], and builds upon two
existing frameworks. The Rainbow framework [20] is an ar-
chitecture that provides runtime, self-adaptive capabilities for
monitoring, detecting, decision-making, and enactment, while
MORPH focuses entirely on sUAS [15], differentiating be-
tween configuration and behavioral adaptations. We follow the
Rainbow architecture by partitioning the system into different
layers and separating out the monitoring, analysis, and action
components, and we build upon MORPH by differentiating
configuration and behavioral adaptations.

CICADA consists of three layers illustrated in Figure 1.
These include the target system, which contains the physical
sUAS and sensors, as well as their simulated variants. The
translation layer monitors the target system and decides when
to adapt, and then executes any necessary adaptations. It
interfaces with both the target system (via probes, gauges and
effectors) and the adaptation layer. Probes in the translation
layer monitor raw data from the target system, gauges aggre-
gate the data and trigger an adaptation, and effectors perform
the reconfiguration. The adaptation layer analyzes and selects
the reconfiguration strategy. In a MAPE-K system the K stands
for knowledge about the system; for example, information
about flight control parameters used to support the analyses

pre
-pr

int

Adaptation
Strategies

Knowledge
Base

Parameters

Environmental
Knowledge

Adaptation Layer

Translation Layer

Probes
(Controller & Attributes)

Effectors

Commands

Sensor Data

Reconfiguration

Flight Plans

Gauges

Environment

Target System

Flight
Controller

Weather
Detection

Machine
Learning

Threshold-
based

heuristics

Parameter Interface

Detected
conditions

Adaptation actions

Fig. 1. CICADA Architecture: The flight controller in the target system communicates with the sUAS to send mission commands and modify configuration
parameters. The sUAS is subject to environmental conditions. The translation layer contains probes, gauges and effectors which interact with the target system
and the adaptation layer. Grey boxes indicate future work. The adaptation layer uses its internal knowledge base to select and plan reconfiguration strategies..

and reconfiguration strategy. The adaptation layer then sends
the reconfiguration strategy to the effectors (in the translation
layer) which implement the adaptation.

At a more detailed level, CICADA’s target system (upper
right) contains the flight controller (e.g., Ardupilot [21], PX4
[11] or Paparazzi [22]) and the sensors integrated into the
flight controller or attached externally to the sUAS. The flight
controller interfaces directly with the sUAS’ sensors, and
CICADA supports these integrated sensors as well as external
ones. For example, CICADA can monitor data generated by
the flight controller to detect unstable conditions or may
deploy specialized environmental sensors or a camera to detect
weather conditions [23]. Finally, the target system interacts
with the environment, which may include externally applied
changes to the controller parameters.

The translation layer consists of probes, gauges and ef-
fectors. Probes collect the realtime data from the controller,
aggregate it, perform analysis, and detect emergent problems
in the environment and/or onboard the sUAS. Gauges my be of
different types. We envision ones based on computer vision,
data analytics, and configuration checks. Initially, we focus
on the heuristics implemented in this paper, which monitor
controller instability thresholds; however, more sophisticated
approaches based on deep-learning are also feasible and will
be included in future work [24].

The last part of the translation layer is the effector, which
interacts with the adaptation layer and performs the adaptation
in the target system.

Finally, our adaptation layer is where we reason about
the adaptations, leveraging knowledge of the way different
parameters impact stability. The knowledge base can be grown
experimentally using the simulator to discover preferred adap-
tations as well as parameter changes to be avoided (guards),
such as those described in the work of Swanson et al. [17].

In order for the sUAS to adapt to changes in flight behavior,
it needs the ability to assess current conditions at runtime.
CICADA accomplishes this with its gauges, using an onboard
analytics component to analyze real-time sensor data from
the probes to check for threshold violations. This sensor
data consists of information about the expected and actual
roll, pitch, and yaw of the sUAS. CICADA also monitors
key configuration parameters to check that they are within
acceptable bounds. This is particularly important if the sUAS
is flying in a populated area in which malicious attacks are
more likely to occur. As shown by Kim et al. [5], the use of
parameter values outside safe ranges is often not constrained
and is therefore open for attack. CICADA therefore first checks
that all parameters are within-range prior to flight and reruns
these checks during flight if instabilities are detected.

B. Adaptations

We designed three adaptations for CICADA which we
describe here. Our first adaptation attempts to stabilize the
sUAS so that it can complete its flight (albeit with some
noise and potential drift). To achieve this adaptation, we re-
set all changed parameters back to a known set of baseline
values. We call this revert-to-baseline. Our other adaptations
are behavioral. They allow the mission to fail, but attempt to
avoid a catastrophic consequence. The first of these strategies
is to send the sUAS into loiter mode, forcing it to hover in
place. The second strategy forces the sUAS to land in place.

C. CICADA Instantiation

Our initial instantiation of CICADA is simulation-based.
This allows us to safely experiment with environmental and
configuration factors; however, CICADA is fully compatible
with our sUAS hardware platform for future deployment on
physical sUAS. Once we have gained a deeper understanding

pre
-pr

int

of dependable and safe reconfigurations it should be trans-
ferrable since the PX4-Autopilot controller supports hardware
deployments as well as software-in-the-loop.
Controller: The PX4-Autopilot software [11] is an open
source flight control software compatible with many different
flight control boards including Pixhawk 4, VOXL Flight,
and ControlZero. It uses the MAVLink messaging protocol
to send mission plans and control commands to the sUAS’
hardware flight controller, and is also used by the sUAS to
send status updates to the Ground Control System (GCS).
Control software can be hosted onboard the sUAS (e.g., on
an onboard Jetson) or offboard on a GCS.
Configuration Parameters: The PX4-Autopilot flight con-
troller has over 70 categories of parameters, and around 1,200
configurable properties [25]. Furthermore, many parameters
often have a large range of possible values, all of which can
be individually configured. While a subset of the parameters
are specific to different types of vehicles (e.g., fixed wing
vs. copters), applicable to specific hardware devices (e.g.,
gimbal), relevant only in simulation environments, or can only
be configured prior to activation of the sUAS, there are a
large number that are common across all vehicles, relevant
to both simulation versus hardware environments, and which
can be manipulated statically (requiring a restart) as well
as dynamically (taking effect immediately). In this work,
we focus primarily on the dynamic configuration parameters
which can be leveraged for runtime adaptation.
Probes. CICADA’s initial monitoring component is plugged
into the PX4 flight controller. PX4 uses an uORB messaging
protocol which is an asynchronous publish-subscribe API, to
publish various uORB topics associated with different sensor
data. For instance, the uORB topic ‘sensor accel’ contains
accelerometer data which gives the acceleration across x,y
and z axes. While it is possible to monitor data from a wide
range of sensors, we start with only a few that are relevant
for evaluating aspects of flight stability. CICADA subscribes
to vehicle attitude and vehicle attitude setpoint and monitors
and aggregates the actual and estimated roll, pitch and yaw
data in real time. CICADA can also monitor the configuration
data using the controller’s parameter settings functions.
Gauges: Gauges aggregate the data from probes and from
the PX4 parameter interface. For this instantiation we use
two types of gauges (see Section II-A). The first aggregates
acceleration and attitude data, including roll, pitch, and yaw
values, and detects a variance from the expected and actual
values. This is a simple mechanism to detect instabilities
and will trigger an adaptation. The second collects current
parameter settings. Adaptation is only triggered by the first
gauge when it detects a deviation from the expected values.
Instability information is shared with the adaptation layer.
Effectors. CICADA’s effectors apply decisions made in the
adaptation layer by sending updated parameter commands to
the flight controller in the target system. They also communi-
cate with the adaptation layer to determine what changes to
make. In CICADA we support the three adaptations mentioned,
(1) revert-to-baseline, (2) loiter, and (3) land.

III. EXPERIMENTAL EVALUATION

Our study seeks to answer the following three research
questions:2

• RQ1: What is the impact of configurations on flight success?
• RQ2: How well does the revert-to-baseline adaptation re-

cover from instability-causing configurations?
• RQ3: How effective are the loiter and land strategies at

stabilizing problematic configurations?

A. Configuration Space Model
We first selected a set of parameters based on the work

of Kim et al. [5] since the focus of their work was also
on flight instability. We then retrieved additional information
from three sources; the PX4 discussion forums [26], formal
PX4 documentation [25], and the PX4 bug repository [27].
In the online discussion forums, experts suggested ways to
tune and optimize specific parameters to avoid poor cali-
brations that caused high vibration, insufficient thrust, and
other negative outcomes on flight quality. We identified a
set of 13 core parameters that appeared most frequently in
discussions and in the relevant literature, which we refer to
as our core parameters since they were specially selected
for their relevance to controller stability. We then added 26
more parameters (labeled the extended set), for a total of 39
parameters providing a larger exploration space.

The top portion of Table I shows the set of 13 core
parameters, while the bottom portion shows the extended set.
We partitioned each parameter into five choices within its valid
range. We selected the minimum (MIN), maximum (MAX),
and default value (bold) for each parameter as specified in the
official PX4 documentation. We then added (OP1), a value
approximately midway between min and default (OP2), and a
value approximately midway between max and default (OP3).
For MPC THR MAX the default value is also its MAX so
we modified the partition scheme to use values dispersed
between MIN and MAX. During this process, we uncovered
missing online documentation. The maximum values for three
of the parameters, MC PITCHRATE D, MC PITCHRATE I
and MC ROLLRATE I were not specified. Hence, we used the
largest maximum value from the documented parameters and
tried to include the maximum value of other similar parameters
as well. For those parameters, we also experimented with
significantly higher values, up to and beyond 1800, the highest
value of any parameter in the set, and found the behavior was
not noticeably different than with the maximum value.

B. Sampling
The configuration set has 39 parameters, each with 5 values.

This leads to 539 possible configurations, which is too large
to exhaustively explore. Therefore, we performed experiments
with two different strategies for systematic exploration. The
first approach was creating a one-hop sample. For each con-
figuration, the algorithm uses default values for all but one
parameter, and then systematically evaluates each of the four

2Supplemental data is at https://sites.google.com/iastate.edu/cicada

pre
-pr

int

TABLE I
PX4 PARAMETERS DEPICTING THE MINIMUM AND MAXIMUM VALUES

AND THREE ADDITIONAL PARAMETERS(OP) FOR EACH. BOLDFACE
DENOTES DEFAULT VALUES. THE FIRST 13 PARAMETERS REPRESENT THE

CORE PARAMETERS. THE REST ARE THE EXTENDED SET. VALUES
DENOTED BY ⇤ HAVE BEEN EXCLUDED FROM 2-WAY DATA.

Parameter MIN OP1 OP2 OP3 MAX

C
O

R
E

MC PITCHRATE P 0.01⇤ 0.08 0.15 0.38 0.6
MC PITCH P 0.0⇤ 3.3 6.5 9.3 12.0
MC ROLLRATE P 0.01⇤ 0.08 0.15 0.33 0.5
MC ROLL P 0.0⇤ 3.3 6.5 9.3 12.0
MC PITCHRATE D 0.0 0.0015 0.003 0.01 12.0⇤

MC PITCHRATE I 0.0 0.1 0.2 0.6 12.0
MC PITCHRATE K 0.01⇤ 0.505 1.0 3.0 5.0
MC ROLLRATE D 0.0 0.0015 0.003 0.0065 0.01
MC ROLLRATE I 0.0 0.1 0.2 0.6 12.0
MC ROLLRATE K 0.01⇤ 0.505 1.0 3.0 5.0
MPC THR MAX 0.0⇤ 0.25⇤ 0.5⇤ 0.75⇤ 1.0
MC PITCHRATE MAX 0.0⇤ 110.0 220.0 1010.0 1800.0
MPC THR MIN 0.05⇤ 0.085 0.12 0.56 1.0⇤

Parameter MIN OP1 OP2 OP3 MAX

EX
TE

N
D

ED

MC YAWRATE P 0 0.1 0.2 0.4 0.6
MC YAWRATE I 0 0.1 0.2 0.4 0.6
MC YAWRATE D 0 0.1 0.2 0.4 0.6
MC YAWRATE K 0 0.5 1 3 5
COM ARM IMU ACC 0.1 0.4 0.7 0.85 1
COM ARM IMU GYR 0.02 0.135 0.25 0.275 0.3
MC PITCHRATE FF 0 0.0015 0.003 0.01 12⇤

MC ROLLRATE FF 0 0.0015 0.003 0.0065 0.01
MC ROLLRATE MAX 0⇤ 110 220 1010 1800
MC YAWRATE FF 0 0.1 0.2 0.4 0.6
MC YAW P 0 1.4 2.8 3.9 5
MIS YAW ERR 0 6 12 39 90
MPC TILTMAX AIR 20 32.5 45 67 89
MPC XY P 0 0.475 0.95 1.475 2
MPC Z P 0⇤ 0.5 1 1.25 1.5
COM POS FS EPH 0⇤ 3 5 7 10
EKF2 ABL LIM 0⇤ 0.2 0.4 0.6 0.8
MOT SLEW MAX 0 1 2 3⇤ 4⇤

SENS BOARD ROT 0 10⇤ 20⇤ 30⇤ 40⇤

COM VEL FS EVH 1 2 3 4 5
MC PR INT LIM 0 0.15 0.3 0.45 0.6
MPC ACC HOR 2 2.5 3 9 15
MPC ACC HOR MAX 2 3.5 5 10 15
MPC XY VEL I ACC 0 0.2 0.4 30.2 60
SENS BARO QNH 500 756.65 1013.25 1256.65 1500
MPC Z VEL D ACC 0 0.5 1 1.5 2

non-default values for that parameter. This is repeated for
all configuration parameters. This sample has 13 ⇥ 4 or 52
configurations for the core set and 26⇥4 or 104 configurations
for the extended set (and 156 for the complete set).

While one-hop testing covers the entire range of values
for every individual parameter, we also wanted explore in-
teractions between parameters, using tests with two different
parameters at a time set to non-default values. However, a two-
hop algorithm created a sample that was too large. Therefore,
we leveraged pairwise (or 2-way) combinatorial testing [28],
[29]. 2-way combinatorial testing ensures that all pairs of
parameter values are contained at least once in the sample
used for testing, and attempts to minimize the number of
configurations needed to satisfy this goal. We used a simulated
annealing tool to create these samples [30].

We ran all pairwise samples and found that a large number
of configurations failed. This is not unexpected because a pair-
wise sample ensures all single parameter values are combined
with all other parameters, hence the failing parameters values
will be heavily represented in the sample. We thus removed
all parameter values that failed during one-hop testing from
our pairwise sampling (these are starred in Table I).

C. Metrics
We measure the duration of the mission, the maximum

altitude reached, total distance flown, and the maximum tilt.
We retain the PX4 logs for each run, which allows us to
analyze the flight in detail and view the exact flight path. We
also collect the number of instabilities and the outcome of the
mission (success or failure).
Mission Success and Failure In order to establish a bench-
mark for flight success and failure, we built a test mission
that would guide the sUAS through a realistic flight scenario.
During the test mission, the sUAS is first commanded to arm,
take off, and rise to an altitude of 10 meters. It then flies to
a central waypoint 25 meters from the point of origin, and
then moves to four other waypoints located five meters from
the central waypoint in each of the cardinal directions. The
sUAS must complete a path between these points to form
a square shape before returning to the central waypoint and
finally heading back to the point of origin to land. The sUAS
hovers briefly at each waypoint to approximate a more realistic
real-world mission. For a run to be considered a success, the
sUAS must reach all of these waypoints and return to the
origin. If for any reason the sUAS fails to reach an expected
waypoint within a predefined amount of time (which is set as
the standard ROS timeout length of 15 seconds), the mission
is classified as a failure.

D. Implementation Details
We implemented CICADA in Python on Ubuntu 20.04.

The main CICADA program monitors the sensor and mission
information over the course of the flight, determines when to
adapt, and implements the required adaptation strategy. The
probes were implemented as uORB plugins to the controller.
To control the sUAS we use ROS-Noetic [31]. The Robot Op-
erating System (ROS), is a widely used open-source suite for
robotics applications. We used the PX4-Autopilot controller
(version 1.12), and the Gazebo simulator [32]. We used the
Iris multicopter airframe for all tests. The mission was defined
in Python; flight commands and waypoints were transmitted
to the sUAS via a MavROS interface. CICADA runs within a
docker container. We used Docker Desktop version 4.4.2, on
macOS BigSur 11.5.2. The container was allocated 2 CPUs
and 2 GB of memory.

It took approximately 130 seconds to complete a mission,
with an estimated 100 seconds of actual flight time. Around
30 additional seconds were required to launch the various
components before the start of the mission.

E. Instabilities and Adaptation
To measure an adaptation-triggering instability, we used

the previously described lightweight approach comparing the
actual roll, pitch, and yaw of the vehicle against the expected
roll, pitch, and yaw values as calculated by the flight control
software. An instability message was triggered at any point
that the difference between the observed and expected values
for any of these attributes exceeded a predefined threshold.
The threshold was set to 10 degrees based on the authors’

pre
-pr

int

experience from observations of instabilities in real-world
physical sUAS systems. As soon as an instability was detected,
the adaptation protocol was activated.

When the sUAS received the flight mission, it started with a
set of configurations known to be safe for the Iris quadcopter,
which we refer to as the set of baseline parameter values.
This baseline set can be modified to accommodate other
sUAS models to ensure that they are safe for any specific
system being used. Immediately prior to flight, parameters
were changed to the values decided for the current experiment.
If an instability was detected, CICADA identified the parameter
values that were currently set to non-baseline values in the
flight control software. Action was then automatically taken
based on the adaptation protocol that is selected. In the case
of the revert-to-baseline strategy, all parameters which were
found to have been changed to potentially unsafe values were
reset to their baseline values. For other adaptation strategies,
the relevant protocol was put into effect immediately and
the parameters were reset afterwards to ensure that the flight
control software was in a safe state for the next run.

F. Threats to Validity
In order to maintain consistency across all our experiments,

we ran simulations using a single mission plan and a single
sUAS model, which means that we cannot guarantee gener-
ality. The experiments were also run in a simulator, rather
than on physical systems, due to the potential danger and cost
of running sUAS hardware with instability-causing configura-
tions. However, based on hundreds of hours of simulation and
physical flights in our prior sUAS work, we have observed
that the simulator we used has high fidelity with respect to
real-world flights, and furthermore, that the kinds of flight
anomalies we observed matched real-world problems [33].

Only one sUAS model (the Iris quadcopter) was used in
our study as this is the default model supported by the
Gazebo simulator. It is likely that different models will require
different parameter tuning, and as such, our results may not
apply equally to other models. We note that our test harness
allows the user to specify baseline parameter values for any
sUAS, and is therefore compatible with other models as well.

We also explored a limited set of parameter changes, so our
experiments are not exhaustive in the parameter space. In order
to obtain results that would be relevant for real-world users,
we focused on parameters that literature and user reports on
forums suggested would have a strong effect on flight stability.

IV. RESULTS

We now present the results of each RQ in turn.

A. RQ1: Studying the Impact of Configurations
Kim et al. [5] used fuzzing to look for failing configurations;

however, they did not focus on flight instability, did not
systematically sample the valid configuration space, and were
not able to identify combinations of parameters that are most
likely to fail. This study provides a baseline for understanding
interactions in the parameter space. Furthermore, this is a first

step in developing our knowledge base for adaptation. It can
be leveraged later and integrated with learning.

TABLE II
COMPARISON OF RESULTS FOR 1-HOP AND 2-WAY SAMPLE SETS FOR

NON-ADAPTIVE AND REVERT-TO-BASELINE ADAPTIVE TESTS. NO.
TRIALS IS NUMBER OF RUNS PER SAMPLE.

Sample (set) No. Failure Adaptive Reduction in
Trials Rate Failure Rate Failure Rate

1-hop (core) 5 23.1% 7.7% 15.3%
1-hop (extended) 1 11.5% 8.6% 2.9%
1-hop (total) 1 16.9% 9.4% 7.5%
2-way (core) 1 72.4% 37.9% 34.5%
2-way (complete) 1 92.0% 84.0% 8.0%

(b) Completes flight, but noisy(a) Default Configuration

(c) Fails to complete takeoff (d) Fails to reach all waypoints

Failing Configurations

Fig. 2. Example flight paths under different configurations

Table II shows the samples and number of times we ran
them (No. Trials). The third column are failure rates of the
various samples. This ranges from 11% in the 1-hop extended
set to 92% in the 2-way covering array for the complete set.
We observed that failing parameter values frequently lay at
the extremes of the valid ranges. In many cases, the minimum
value led to mission failure, which generally aligns with the
findings of Kim et al. [5]. There were also several cases in
which the maximum value was the only one that failed. Figure
2 shows example flight paths for the (a) default configuration,
a (b) noisy passing configuration, a (c) failing configuration
that never takes off and (d) one that takes off but fails to reach
all waypoints. We present a comparison of our findings with
the findings of Kim et al. for the same set of parameters in
Figure 3. They used a flight path deviation-based threshold
using the integral absolute error formula for determining
flight failure and success. We believe that this approach may
be overly pessimistic, as we observed that in many cases,
missions were able to complete successfully despite noisy
flight paths. In addition, some of their parameters failed on
all values, including defaults, e.g. MC PITCHRATE FF and
MC YAWRATE FF, the feedforward pitch and yaw rates,
which we did not observe. Wind and other environmental
factors could also impact the accuracy of this metric.

We show a boxplot of the maximum tilt angle for the
one-hop core set in Figure 4. We see that failing cases had

pre
-pr

int

Fig. 3. Comparison of valid and invalid values with RVFuzzer 1-dimensional
mutation. Failure-causing parameter values are marked in red.

significantly higher maximum tilt angles on average, as well
as a much wider spread, despite the median only being slightly
higher than the passing cases. Our observations suggest that
this wider spread may be due to some failure-causing config-
urations inducing high tilt angle fluctuations if they actually
fly, while in other configurations the sUAS struggles to take
off at all, resulting in very low tilt angles.

Fig. 4. Maximum tilt angle for passing vs failing 1-hop configurations.

Fig. 5. Maximum tilt angle for 2-way sample configurations with and without
the revert-to-baseline adaptation enabled.

We note that the failure rate is also higher for the pairwise
sets. This is likely due to the greater number of configuration

changes from the default. While 2-way combinatorial testing
ensures that any given pair of parameter values is covered in
at least one configuration in the sample, it does not mean that
only that pair is being modified in that configuration. Rather, in
most of the configurations, almost every parameter is changed
from the default, in order to cover the sample space using a
small number of configurations.

Summary of RQ1. We conclude that the configuration
parameters have a large impact on flight stability.
When changing the values of frequently modified
relevant parameters, we saw variation in the success
of the mission, in flight paths, and in the maximum
tilt angle during the flight.

B. RQ2: Adaptation using Revert-to-Baseline

Since an instability can occur at any time during a mission,
once it is detected, it indicates that a problem has already
occurred and the flight has been affected as a result. When
a user attempts to take manual action upon receiving this
information, it is often too slow to counteract the effect. An
automatic adaptation mechanism that monitors and immedi-
ately responds to instabilities is preferable both because it can
react more quickly to correct unstable flight behavior and also
because it does not require the user’s attention to be focused
on the instability detector at all times.

Our first adaptation strategy, revert-to-baseline, relies on a
knowledge base of parameter values considered to be safe
based either on PX4 documentation or initial pid tuned con-
figuration of that specific sUAS. We refer to this set of safe
values as baseline values. Any parameters not currently set
to their baseline value are updated to match the baseline
value. The aim of this strategy is to restore stability to the
flight and allow the sUAS to complete the current mission.
We note that the baseline will be specific to a particular
airframe, and environmental conditions. We show, for instance,
the parameters which differ in the baseline for the simulated
Iris compared with one of our physical hexcopters during a
real flight in Table III. This baseline can be captured in our
knowledge base or at arming.

TABLE III
COMPARISON OF NON-MATCHING BASELINE PARAMETER VALUES FOR

THE IRIS QUADCOPTER VS HX18 HEXCOPTER ALONG WITH THEIR
DOCUMENTED RANGE. ? INDICATES AN UNSPECIFIED LIMIT.

Parameter Iris HX18 Range
MC PITCHRATE D 0.003 0.0055 [0.0, ?]
MC PITCHRATE I 0.2 0.24 [0.0, ?]

MC PITCHRATE MAX 220 60 [0.0, 1800.0]
MC PITCHRATE P 0.15 0.2 [0.01, 0.6]

MC PITCH P 6.5 4.4 [0.0, 12]
MC ROLLRATE D 0.003 0.005 [0.0, 0.01]
MC ROLLRATE I 0.2 0.24 [0.0, ?]

MC ROLLRATE MAX 220 60 [0.0, 1800.0]
MC ROLL P 6.5 5.2 [0.0, 12]

MC YAWRATE MAX 200 45 [0.0, 1800.0]
MPC ACC HOR MAX 10 5 [2.0, 15.0]
MPC TILTMAX AIR 45 20 [20.0, 89.0]

pre
-pr

int

In order to determine the effectiveness of the revert-to-
baseline adaptation strategy, we studied the flight behavior of
missions with this adaptation mechanism enabled and disabled
and compared the results for each of the sample sets. The
results are summarized in the rightmost columns of Table II.

The revert-to-baseline adaptation strategy reduced the fail-
ure rate for all parameter sets we studied, improving by
between 2.9% and 34.5% over the non-adaptive version (see
Table II). The greatest improvement in the one-hop tests was
for the core parameters. The parameters in this set were
selected because they were known to be some of the most
impactful on flight stability. The extended set started with a
lower failure rate and saw a smaller decrease in failure rate,
which indicates that that set of parameters likely had a less
meaningful effect on flight stability. The 2-way samples started
with a much higher rate of failure. However, the improvement
for these sets was also larger. The pairwise sample for the
core set failed for over 70% of configurations, but was able to
more than double its success rate, improving to a failure rate
of 37.9% with adaptation.

We observed that the maximum tilt angle for the pairwise
sample configurations was slightly lower on average when
the revert-to-baseline protocol was in place. We established
in Section IV-A that failing configurations have a higher
maximum tilt angle on average, and that significantly more
configurations failed without the revert-to-baseline adaptation
protocol than when it was enabled. Therefore, in order to
compare the maximum tilt angles for the adaptive and non-
adaptive trials fairly, we only considered passing cases from
both sets. We observed that despite this consideration, the
non-adaptive trials still showed slightly higher averages in
terms of maximum tilt, and significantly larger spread, as
visualized in Figure 5. This may be due to the existence
of configurations that didn’t entirely prevent mission success,
but still introduced a significant amount of instability during
the flight, such as the configuration in path (b) of Figure 2.
The revert-to-baseline strategy would have reacted to such
configurations and modified them, thus reducing the number
of high-tilt outliers. The exception to this trend was the 2-
way sample for the complete set, which had too few passing
configurations without adaptation to demonstrate spread.

The pairwise sample had an initial failure rate of 98%,
nearly failing for every configuration. However, the revert-
to-baseline strategy still had a noticeable effect improving
the success rate eightfold compared to the non-adaptive case.
Our observations suggest that one reason for the lower
success rate compared to the one-hop tests for adaptation
is the existence of hidden parameter interactions. In some
cases, PX4 flight parameter values depend on the values of
other parameters, making them more difficult to revert. For
example, MPC THR MIN, which controls minimum thrust,
has a hidden interaction with MPC THR HOVER, another
thrust parameter, which is not in either of our test sets.
If MPC THR MIN, which has a default value of 0.12,
is set to 1.0, then MPC THR HOVER, which has a de-
fault value of 0.5, also automatically gets set to 1.0. How-

ever, if the adaptation protocol attempts to automatically set
MPC THR HOVER back to 0.5, the controller throws a
warning and the attempt to revert the parameter value fails,
causing the parameters to stay the same, and eventually leading
to mission failure. Some of this may be mitigated as we build
up our knowledge base.

TABLE IV
TAKEOFF OUTCOMES. NUMBER OF FAILING TAKEOFFS AND MISSIONS

Sample Total Failing Failing
configs Missions Takeoffs

1-hop non-adaptive (core) 52 12 9
1-hop adaptive (core) 52 4 4

1-hop non-adaptive (extended) 104 12 8
1-hop adaptive (extended) 104 9 7
2-way non-adaptive (core) 29 20 19

2-way adaptive (core) 29 11 11
2-way non-adaptive (complete) 50 46 44

2-way adaptive (complete) 50 42 33

Summary of RQ2. We conclude that CICADA’s
revert-to-baseline adaptation strategy is successful at
recovering from many failures caused by misconfigu-
rations using the flight instability trigger to adapt.

C. RQ3: Effectiveness of Different Adaptation Strategies

The revert-to-baseline adaptation strategy is effective in
many cases in enabling an sUAS to continue and complete
missions that would otherwise have been interrupted by con-
figuration issues. However, there are also scenarios in which
it isn’t successful in counteracting these issues. Alternative
adaptation strategies are required to prevent dangerous flight
behavior. During our testing, we discovered a significant num-
ber of pairwise sample configurations that caused the sUAS to
rapidly ascend to dangerous altitudes instead of following the
mission path, which the revert-to-baseline strategy was unable
to prevent. An example of this type of uncontrolled ascension
is contrasted with a normal mission flight path in Figure 6.

Fig. 6. Comparison of expected mission flight path (left) with rapidly
ascending flight behavior (right) caused by pairwise misconfigurations.

pre
-pr

int

We study our two adaptation strategies to address the limi-
tations of the revert-to-baseline approach for such problematic
configurations. The first of these is the loiter strategy, in which
the sUAS reacts to an instability by hovering in place instead
of continuing its previous flight path. The other is the land-in-
place strategy, which commands the sUAS to land immediately
at its current location. Importantly, unlike revert-to-baseline,
neither of these strategies allow the sUAS to complete the
current mission. Rather, the focus for this adaptation is on
safety, as it’s vital that the sUAS does not harm or damage
people or objects in the vicinity if a configuration issue causes
a flight to go astray.

To test these strategies, we began by identifying config-
urations that the revert-to-baseline approach was unable to
recover from. We noted that many of the failures were cases
which were not able to take off successfully. This aligns with
our real-world observations, where sUAS with extremely low
thrust will just spin propellers, while sUAS with almost, but
not quite, sufficient thrust to take off, tend to tip over and
break propellers after approximately one minute. Therefore, if
an sUAS fails to takeoff after 30 seconds of thrust, we can
automatically kill the motors and disarm. This method can be
applied to all cases in Table IV for which takeoff fails entirely.

In order to test the loiter and land-in-place strategies on
cases which weren’t already covered by this protocol, we
isolated configurations for which the takeoff succeeded and the
sUAS reached the altitude of 10 meters specified by the mis-
sion. This also allowed us to evaluate the performance of each
adaptation strategy on equal grounds (if the sUAS wasn’t in the
air at the time of adaptation, then the loiter strategy couldn’t
be fairly compared to the land-in-place strategy). We discarded
any configurations for which the takeoff failed. We ultimately
identified 11 configurations that fit this criteria. Of these, 9
were from the pairwise sample of the complete parameter set,
and 2 were from one-hop testing with the MPC XY P and
MPC Z P parameters. The results are summarized in Table V.
The configurations for which the uncontrolled ascent occurred
are marked as UnASC in the table.

We found that both strategies were successful in preventing
the uncontrolled vertical ascent from happening in all cases
where it was previously happening. However, not all of them
were successes because there were instances where the flight
behavior exhibited by the sUAS was different than expected.
Namely, in several of the failures for the loiter strategy, the
instability was detected before the sUAS took off, and the
mitigation caused the sUAS to flip over on the ground instead
of rising to takeoff altitude. We classified this as a failure
because such situations often cause damage to the sUAS.

There were also some cases in which the hovering was not
completely stationary and led to slight drift in the horizontal
or vertical directions, but without leading to a crash or other
risky behavior, or the sUAS failed to takeoff entirely. We do
not consider these successes, but since the primary objective
of the loiter adaptation is to prevent unsafe behavior, and that
was achieved, they are simply listed with the descriptive labels
“drift” or “no takeoff” in the table.

TABLE V
COMPARISON OF RESULTS FOR SELECTED SET OF LOITER AND

INSTANT-LAND ADAPTIVE TESTS. UNASC ARE CONFIGURATIONS WITH
AN UNCONTROLLED ASCENT.

Config. UnASC Adaptation Loiter Land
A 7 triggered success success
B triggered success failure
C 7 triggered drift success
D 7 triggered drift success
E triggered success success
F 7 triggered failure success
G 7 triggered no takeoff success
H 7 triggered failure success
I 7 triggered failure success
J not triggered failure failure
K not triggered failure failure

Fail Rate 45.5% 27.3%

The land-in-place strategy was effective in most cases, often
detecting the configuration-related instabilities immediately
when takeoff was attempted and taking action instantly to
command a safe landing. We identified one failure of this
approach in which the sUAS landed after an instability was
detected, only to take off again and hover at a low altitude.
We were unable to explain the cause of this behavior, but
the authors have previously observed this behavior in phys-
ical sUAS as well. Configurations J and K failed for both
strategies; however, these configurations were unique in that
in both cases, no instability was ever reported, which meant
the adaptation protocols were never put into place. We note
that these cases were both from the one-hop experimental set,
using the minimum values for the parameters MPC XY P and
MPC Z P. We believe that these parameter values severely
limited the attitude fluctuations of the sUAS, which both
caused the mission to fail and prevented our gauges from
detecting the error and triggering adaptation. However, ulti-
mately, both strategies were broadly successful in countering
the ascension issue and preventing the occurrence of risky
flight behavior for this set of configurations.

Summary of RQ3. As we explored especially prob-
lematic configurations that the revert-to-baseline strat-
egy was unable to address, we found that they could
cause dangerous flight behavior. CICADA was able to
prevent unsafe behavior in the majority of cases using
the loiter and land-in-place strategies.

V. DISCUSSION

We now discuss some of the findings of this work and its
implications. As observed in our experiments, sensing realtime
data from the sUAS controller allows us to quickly detect and
adapt to changing environmental conditions. In this work we
were limited by several factors which we describe here.
• Additional gauges may improve the adaptation. Our

implementation currently only takes attitude data from the
sensors as input. However, not all misconfiguration-related
issues will be directly reflected in the roll, pitch, and

pre
-pr

int

yaw information. By implementing more gauges into our
framework, we may be able to detect other flight-threatening
issues that the attitude sensors alone could not catch.

• Need for a Larger Parameter Exploration. In this work
we chose sets of parameters that we expected would make
a difference in the vehicle stability during flight. However,
we did not perform a systematic sampling of the entire
PX4 parameter space. Exploring a larger set of parameters,
as well as analyzing more complex interactions between
parameters, would increase our understanding of the config-
uration space and allow users to be better informed about
potential misconfigurations in their sUAS.

• Implications. The key takeaways from this study are that
configurations can have a significant impact on flight sta-
bility and success in sUAS, and that we can leverage flight
control parameters to dynamically adapt to and recover from
unstable flight behavior. Knowledge of the parameter space
and immediate activation of the necessary adaptation pro-
tocols upon detection of flight instability can help improve
sUAS safety and reliability.

VI. RELATED WORK

There is a large body of research on adaptive systems such
as best practices, validation and challenges [34]–[37] as well
as research on using the MAPE-K loop [17], [20], [37]–
[40]. Several recent studies propose the use of MAPE-K in
uncrewed aerial vehicles [15], [41], [42] and robot planning
[12], [43]. We discuss some closely related work to ours here.

Braberman et al. [15] proposed a reference architecture
(called MORPH) for uncrewed aerial vehicles (UAVs). Like
CICADA they use the Rainbow architecture and a MAPE-K
loop, and split the architecture into (1) reconfigurations which
change parameters to adapt the controller and (2) those that
change the behavior via modification to the the mission plan or
goal. However, while MORPH relies on the flight controller to
report an error in order to trigger adaptation, CICADA directly
monitors flight stability to independently detect issues during
the flight, since failures caused by misconfigurations are typ-
ically not automatically diagnosed and reported by the flight
controller. Furthermore, their work describes an architecture,
but they do not provide experimental results, while we have
instantiated a prototype and evaluated CICADA for multiple
use cases to determine feasibility.

While implementing the MAPE-K loop in self adaptive
systems, Shmelkin [35] refers to interloop & intraloop com-
munication as being the potential bottleneck for decentralized
SASs. They argue the way to overcome this is to consider
preprocessing for knowledge gain on the instance level to
minimize the communication footprint. Jamshidi et al. [12]
use machine learning to reduce a large configuration space,
Elkhodary et al. use feature modeling to reason about potential
reconfigurations [44] and Swanson et al. [17] use both a
feature model and aggregated data over time to learn about
which re-configurations to choose and avoid. CICADA pro-
poses to use knowledge from learning to create different
types of gauges. In our initial implementation we only use

limited knowledge of the configuration space, but we plan
to implement more knowledge in future work similar to that
of Swanson et al. Some adaptations proposed for uncrewed
aerial vehicles involve changing the mission plan (e.g [15],
[41]); however, our primary goal is to complete the mission
via vehicle stabilization, and we only attempt other strategies
when mission completion is known to be impossible with
our primary adaptation approach. Several recent papers also
propose learning to improve self-adaptation [12], [45], [46].
Our use of learning is for improving gauges.

The general problem of finding faults or identifying poor
performance due to misconfigurations is well studied in tradi-
tional software. We point the reader to a representative sample
of references on this topic [47]–[51]; however, none of these
focuses on the sUAS environment or self-adaptation.

Finally, there has been recent work on fuzzing sUAS to find
configuration problems (e.g. [8]–[10], [52], [53]) which fo-
cuses on finding and fixing configurations in sUAS, or studies
instability due to malicious threats [5], [54]. However, none of
this work proposes an automated, self-adaptive approach for
recovery. We have incorporated many of the parameters from
these studies in our core parameter set.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented CICADA, a framework for self-
adaptation in small uncrewed aerial vehicles which aims to
prevent flight instability caused by misconfigurations. We
explored the configuration space of a widely used flight
control software and found that controller parameters had
a large impact on flight stability. We introduced a primary
adaptation strategy to overcome misconfigurations mid-flight
to complete the mission, and demonstrated the effectiveness
of this strategy in recovering from configuration problems
caused by both individually problematic parameter values and
interactions between pairs of parameters. Finally, we proposed
two other safety-focused adaptation mechanisms to prevent
exceptionally dangerous flight behavior from occurring in
situations where the primary strategy was not viable. Our
experiments showed that these strategies were effective in pre-
venting dangerous flight behavior for many of these especially
unsafe misconfigurations.

As future work we plan to devise more intelligent adaptation
strategies to automatically apply the best adaptation mecha-
nism at any given instant of a flight, expand our experiments
to incorporate improved (ML based) gauges, explore an even
larger parameter space, and run experiments on a larger variety
of flight missions and environmental conditions (e.g. wind).
Last, we plan to incorporate CICADA onto our physical drone
systems to demonstrate its potential for real-world usage.

ACKNOWLEDGMENTS

The work in this paper was primarily funded under USA
National Aeronautics and Space Administration (NASA) Grant
Number: 80NSSC21M0185 and the National Science Foun-
dation (NSF) CNS-1931962 and CCF-1909688. We thank A.
Nicolellis for help collecting data for a preliminary study.

pre
-pr

int

REFERENCES

[1] “U.S. Government Accountability Office, Drone operations.” [Online].
Available: https://www.gao.gov/uncrewed-aircraft-systems

[2] G. Pajares, “Overview and current status of remote sensing applications
based on unmanned aerial vehicles (UAVs),” Photogrammetric Engi-
neering & Remote Sensing, vol. 81, pp. 281–330, 04 2015.

[3] B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car
detection using unmanned aerial vehicles: Comparison between faster
r-cnn and yolov3,” in 2019 1st International Conference on Unmanned
Vehicle Systems-Oman (UVS), 2019, pp. 1–6.

[4] T. Multerer, A. Ganis, U. Prechtel, E. Miralles, A. Meusling, J. Mietzner,
M. Vossiek, M. Loghi, and V. Ziegler, “Low-cost jamming system
against small drones using a 3D MIMO radar based tracking,” in
European Microwave Week 2017: ”A Prime Year for a Prime Event”,
EuMW 2017 - Conference Proceedings; 14th European Microwave
Conference, EURAD 2017, vol. 2018-Janua. Institute of Electrical and
Electronics Engineers Inc., Jun 2017, pp. 299–302.

[5] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “RVFuzzer: Finding input validation bugs in
robotic vehicles through Control-Guided testing,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 425–442. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/kim

[6] R. Han, C. Yang, S. Ma, J. Ma, C. Sun, J. Li, and E. Bertino,
“Control parameters considered harmful: Detecting range specification
bugs in drone configuration modules via learning-guided search,” in
Proceedings of the International Conference on Software Engineering.
ACM, 2022. [Online]. Available: https://arxiv.org/abs/2112.03511

[7] P. F. poster, “Strange harrier d7 crash,” Last accessed 5/21/22;
Posted Oct 2019. [Online]. Available: https://discuss.px4.io/t/
strange-harrier-d7-crash/13480

[8] S. Kim and T. Kim, “Robofuzz: Fuzzing robotic systems over robot
operating system (ros) for finding correctness bugs,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2022. New York, NY, USA: Association for
Computing Machinery, 2022, p. 447–458. [Online]. Available: https:
//doi.org/10.1145/3540250.3549164

[9] K.-T. Xie, J.-J. Bai, Y.-H. Zou, and Y.-P. Wang, “Rozz: Property-based
fuzzing for robotic programs in ros,” in 2022 International Conference
on Robotics and Automation (ICRA), 2022, pp. 6786–6792.

[10] M. A. Hossen, S. Kharade, B. Schmerl, J. Cámara, J. M. O’Kane, E. C.
Czaplinski, K. A. Dzurilla, D. Garlan, and P. Jamshidi, “Care: Finding
root causes of configuration issues in highly-configurable robots,” 2023.
[Online]. Available: https://arxiv.org/abs/2301.07690

[11] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015, pp. 6235–6240.

[12] P. Jamshidi, J. Cámara, B. Schmerl, C. Käestner, and D. Garlan,
“Machine learning meets quantitative planning: Enabling self-adaptation
in autonomous robots,” in 2019 IEEE/ACM 14th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2019, pp. 39–50.

[13] P. H. Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, and B. Nuseibeh,
“Dragonfly: a tool for simulating self-adaptive drone behaviours,” in
2019 IEEE/ACM 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2019, pp.
107–113.

[14] G. Moreno, C. Kinneer, A. Pandey, and D. Garlan, “Dartsim: An ex-
emplar for evaluation and comparison of self-adaptation approaches for
smart cyber-physical systems,” in 2019 IEEE/ACM 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 2019, pp. 181–187.

[15] V. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and S. Uchitel,
“MORPH: A reference architecture for configuration and behaviour self-
adaptation,” in Proceedings of the 1st International Workshop on Control
Theory for Software Engineering, 2015, pp. 9–16.

[16] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Failure avoidance in
configurable systems through feature locality,” in Assurances for Self-
Adaptive Systems. Springer, 2013, pp. 266–296.

[17] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone,
“Beyond the rainbow: Self-adaptive failure avoidance in configurable

systems,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
377–388. [Online]. Available: https://doi.org/10.1145/2635868.2635915

[18] D. Hambling, “Drone crash due to GPS interference
in U.K. raises safety questions,” Aug. 2020. [Online].
Available: https://www.forbes.com/sites/davidhambling/2020/08/10/
investigation-finds-gps-interference-caused-uk-survey-drone-crash/
?sh=350a3e1d534a

[19] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41–50, 2003.

[20] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness
of the rainbow self-adaptive system,” 05 2009, pp. 132–141.

[21] Ardupilot, “Ardupilot open source autopilot,” Last Accessed 01/29/22.
[Online]. Available: https://ardupilot.org/

[22] B. Gati, “Open source autopilot for academic research-the paparazzi
system,” in 2013 American Control Conference. IEEE, 2013, pp. 1478–
1481.

[23] S. J. Abraham, Z. Carmichael, S. Banerjee, R. G. VidalMata,
A. Agrawal, M. N. A. Islam, W. J. Scheirer, and J. Cleland-
Huang, “Adaptive autonomy in human-on-the-loop vision-based
robotics systems,” in 1st IEEE/ACM Workshop on AI Engineering
- Software Engineering for AI, WAIN@ICSE 2021, Madrid, Spain,
May 30-31, 2021. IEEE, 2021, pp. 113–120. [Online]. Available:
https://doi.org/10.1109/WAIN52551.2021.00025

[24] M. A. Islam, Y. Ma, P. Alarcon, N. Chawla, and J. Cleland-Huang,
“RESAM: Requirements elicitation and specification for deep-learning
anomaly models with applications to UAV flight controllers,” in 2022
IEEE 30th International Requirements Engineering Conference (RE),
Aug 2022, pp. 153–165.

[25] P. D. forum, “PX4 documentation,” Last Accessed 01/29/23. [Online].
Available: https://docs.px4.io/master/en/

[26] PX4-Autopilot, “PX4 online discussion forum,” Last Accessed 01/29/22.
[Online]. Available: https://discuss.px4.io/

[27] PX4, “PX4 bug repository,” Last Accessed 05/19/22. [Online].
Available: https://github.com/PX4/PX4-Autopilot/issues

[28] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, Feb 2011. [Online]. Available:
https://doi.org/10.1145/1883612.1883618

[29] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial design,”
IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437–444,
1997.

[30] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge,
“Constructing test suites for interaction testing,” in Proc. of the Intl.
Conf. on Soft. Eng., May 2003, pp. 38–48.

[31] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[32] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[33] M. Al Islam, M. Chowdhury, P. Granadeno, J. Cleland-Huang , and
L. Spirkovska, “Towards an annotated all-weather dataset of flight logs
for small uncrewed aerial systems,” in AIAA AVIATION 2023 Forum.

[34] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle, Software Engineering for
Self-Adaptive Systems: A Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 1–26. [Online]. Available:
https://doi.org/10.1007/978-3-642-02161-9 1

[35] I. Shmelkin, “Monitoring for control in role-oriented self-adaptive sys-
tems,” in Proceedings of the IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, 2020,
pp. 115–119.

[36] F. Trollmann, J. Fähndrich, and S. Albayrak, “Hybrid adaptation poli-
cies: towards a framework for classification and modelling of different
combinations of adaptation policies,” in Proceedings of the 13th Inter-
national Conference on Software Engineering for Adaptive and Self-
Managing Systems, 2018, pp. 76–86.

pre
-pr

int

[37] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, May
2009. [Online]. Available: https://doi.org/10.1145/1516533.1516538

[38] C. Kinneer, Z. Coker, J. Wang, D. Garlan, and C. L. Goues, “Managing
uncertainty in self-adaptive systems with plan reuse and stochastic
search,” in Proceedings of the 13th International Conference on Software
Engineering for Adaptive and Self-Managing Systems, 2018, pp. 40–50.

[39] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson,
M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, D. Weyns,
L. Baresi, B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais,
S. Dustdar, G. Engels, K. Geihs, K. M. Göschka, A. Gorla, V. Grassi,
P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek,
S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè,
C. Prehofer, W. Schäfer, R. Schlichting, D. B. Smith, J. P. Sousa,
L. Tahvildari, K. Wong, and J. Wuttke, Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–32. [Online]. Available:
https://doi.org/10.1007/978-3-642-35813-5 1

[40] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing
mape-k feedback loops for self-adaptation,” in 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, May 2015, pp. 13–23.

[41] J. Kim, J. Lee, J. Jeong, H. Kim, J.-S. Park, and T. Kim, “San: Self-
adaptive navigation for drone battery charging in wireless drone net-
works,” in 2016 30th International Conference on Advanced Information
Networking and Applications Workshops (WAINA), 2016, pp. 248–251.

[42] J. Cleland-Huang, A. Agrawal, M. Vierhauser, M. Murphy, and
M. Prieto, “Extending MAPE-K to support human-machine teaming,”
CoRR, vol. abs/2203.13036, 2022. [Online]. Available: https://doi.org/
10.1145/3524844.3528054

[43] G. Püschel, C. Piechnick, S. Götz, C. Seidl, S. Richly, T. Schlegel, and
U. Aßmann, “A combined simulation and test case generation strategy
for self-adaptive systems,” Journal On Advances in Software, vol. 7, no.
3&4, pp. 686–696, 2014.

[44] A. Elkhodary, N. Esfahani, and S. Malek, “Fusion: A framework for
engineering self-tuning self-adaptive software systems,” in Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 7–16. [Online].
Available: https://doi.org/10.1145/1882291.1882296

[45] I. Dusparic and N. Cardozo, “Adaptation to unknown situations
as the holy grail of learning-based self-adaptive systems: Research
directions,” CoRR, vol. abs/2103.06908, 2021. [Online]. Available:
https://arxiv.org/abs/2103.06908

[46] F. J. Affonso, G. Leite, R. A. Oliveira, and E. Y. Nakagawa, “A

framework based on learning techniques for decision-making in self-
adaptive software.” in SEKE, vol. 15, 2015, pp. 1–6.

[47] P. Gazzillo, “Inferring and securing software configurations using
automated reasoning,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1517–1520.
[Online]. Available: https://doi.org/10.1145/3368089.3417041

[48] T. Xu and Y. Zhou, “Systems approaches to tackling configuration
errors: A survey,” ACM Comput. Surv., vol. 47, no. 4, Jul 2015.
[Online]. Available: https://doi.org/10.1145/2791577

[49] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: Understanding and
dealing with over-designed configuration in system software,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 307–319. [Online]. Available:
https://doi.org/10.1145/2786805.2786852

[50] M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham,
“Navigating the maze: The impact of configurability in bioinformatics
software,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
757–767. [Online]. Available: https://doi.org/10.1145/3238147.3240466

[51] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 284–294. [Online]. Available:
https://doi.org/10.1145/2786805.2786845

[52] A. Taylor, S. Elbaum, and C. Detweiler, “Co-diagnosing configuration
failures in co-robotic systems,” in 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2016, pp. 2934–2939.

[53] C. Jung, A. Ahad, J. Jung, S. Elbaum, and Y. Kwon, “Swarmbug:
Debugging configuration bugs in swarm robotics,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 868–880. [Online]. Available: https:
//doi.org/10.1145/3468264.3468601

[54] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), 2020, pp. 25–36.

pre
-pr

int

