CSC 4255 – IoT System Design and Implementation

Network access protocols & IoT placement techniques Georgios Bouloukakis

Winter 2024 - 2025

Outline

- Connecting Things
 - IoT protocol stack
- Communication & Criteria
- Network access protocols
 - Protocols Utilizing IEEE 802.15.4
 - IoT Access Technologies summary
- IoT Device Placement
 - IoT Placement Taxonomy
 - Static Placement approaches
 - Dynamic Placement approaches
- Conclusion

Connecting Things

- Part 1: Communications Criteria
 - characteristics and attributes to consider when connecting Things
- Part 2" IoT Access Technologies
 - technologies considered when connecting Things

State of the Communication module

- Radio transceivers can be put in different operational states:
 - Transmit
 - Receive
 - Idle (ready to receive)
 - Parts of the communication module can be switched off saving energy
 - o Sleep
 - Needs recovery time and startup time

IoT protocols at multiple layers

IoT communication protocols

The behavior of a thing is specified by a set of communication protocols, or rules with which the node operate

IoT communication protocols: PHY

The behavior of a thing is specified by a set of communication protocols, or rules with which the node operate

- How messages are successfully transmitted and received over the wireless channel?
- Goal: mathematically modelling the probability to successfully receive messages as function of the wireless channel characteristics and available design parameters (e.g., transmit radio power)

IoT communication protocols: MAC

The behavior of a thing is specified by a set of communication protocols, or rules with which the node operate

- When a node gets the right to transmit messages?
- What is the mechanism to get such a right?
- Goal: How to model mathematically such a behavior as function of the relevant design parameters (e.g., transmit radio power, time available)?

IoT communication protocols: Routing

The behavior of a thing is specified by a set of communication protocols, or rules with which the node operate

٠

- How to chose a path along the IoT network
 - Maximum total available battery capacity Path metric: Sum of battery levels

 Example: A-C-F-
- Conditional max-min battery capacity routing
- Minimum total transmission power

Communications Criteria

- > Wireless communication is prevalent in the world of smart object connectivity
- Wired or Wireless communication via Gateway Interfaces

Communications Criteria – Range

- How far does the signal need to be propagated?
- What will be the area of coverage for a selected wireless technology?
- Should indoor versus outdoor deployments be differentiated?

Communications Criteria – Frequency Bands

- Radio spectrum regulated by organizations such as the International Telecommunication Union (ITU), Federal Communications Commission (FCC), etc.
 - E.g., portions of the spectrum are allocated to types of telecommunications such as radio, television, military, etc.
- IoT access: licensed bands
 - Licensed spectrum is generally applicable to IoT long-range access
 - Complex deployments involving large number of Things
 - > Exclusivity of the frequency usage, higher quality of service
 - Examples: cellular, WiMAX, and Narrowband IoT (NB-IoT), etc.
- IoT access: unlicensed bands
 - > For industrial, scientific, and medical (ISM) portions of the radio bands
 - > No guarantees or protections are offered in the ISM bands, simpler to deploy
 - Examples: 2.4 GHz by IEEE 802.11b/g/n Wi-Fi, IEEE 802.15.1 Bluetooth, etc.

Communications Criteria – Power Consumption

- Powered things vs. battery-powered things
- Powered things:
 - o direct connection to a power source
 - o communications not limited by power consumption
 - o deployment limited by the availability of a power source
- Battery-powered things:
 - o flexibility to IoT devices
 - o classified by the required lifetimes of their batteries (water or gas meters, parking sensors)
 - o IoT wireless access technologies must address the needs of low power consumption
- Low-Power Wide-Area (LPWA) -- evolution of a new wireless environment
 - o possible to run any wireless technology on batteries

Communications Criteria – Topology (1)

Communications Criteria – Topology (2)

- > 3 main topology schemes are dominant: star, mesh, and peer-to-peer
- Start topology:
 - long-range and short-range technologies
 - o cellular, LPWA, and Bluetooth networks
 - o utilize a single central base station for communications with things
- Peer-to-peer topologies:
 - o allow any device to communicate with any other device if in range
 - rely on multiple full-function devices
 - enable more complex formations, such as a mesh networking topology
- Mesh topology:
 - helps cope with low transmit power
 - o reach a greater overall distance, and coverage
 - o requires a properly optimized implementation for battery-powered nodes

Communications Criteria – Constrained Devices

- Constrained things have limited resources
- Some classes of things do not implement an IP stack
- Classes of Constrained Nodes, as Defined by RFC 7228:
 - Class 0: severely constrained, < 10 KB mem, < 100 KB Flash, typically battery powered, no IP stack, no security mechanisms, unlicensed LPWA, e.g., sensors sends 1 byte
 - Class 1: ~ 10 KB mem, ~ 100 KB Flash, no complete IP stack implementation, implement an optimized stack (e.g., for CoAP), no need for gateway, support for security
 - **Class 2**: running full implementations of IP stack, > 50 KB mem, > 250 KB Flash

Communications Criteria – Constrained-Node Networks

IoT access technologies suited to connect constrained nodes

- o E.g,: IEEE 802.15.4-g RF, IEEE 1901.2a PLC, LPWA, and IEEE 802.11ah
- o often referred to as low-power and lossy networks (LLNs)

Data Rate and Throughput

- range from 100 bps with protocols such as Sigfox to tens of megabits per second with technologies such as LTE and IEEE 802.11ac. (Sigfox, LTE, and IEEE 802.11ac
- o actual throughput is less—sometimes much less—than the data rate
- bandwidth requirements, capacity planning rules, expected real throughput, etc.,: important for proper network design and successful production deployment
- Latency and Determinism
 - o latency expectations of IoT applications should be known when selecting an access technology
 - May range from a few milliseconds to seconds

IoT Access Technologies

For each IoT access technology:

- Standardization and alliances: bodies that maintain the protocols
- Physical layer: wired or wireless methods and relevant frequencies
- MAC layer: bridges the physical layer with data link control
- Topology: topologies supported by the technology
- Security: security aspects of the technology
- Competitive technologies: other technologies that are similar

Datalink-layer

IoT protocol stack

Session		MQTT, MQTT-SN, DDS, XMPP, CoAP, etc.	Sec TCG	urity	Management	
Network	Encapsulation	6LowPAN, 6TiSCH,6Lo, Thread, etc.	Oath 2 SMAC	2.0, K,	IEEE 1451, etc.	
	Routing	RPL, CORPL, CARP, etc.	ISASecure, ace,			
Datalink		WiFi, Bluetooth Low Energy, Z-Wave, ZigBee, DECT/ULE, 3G/LTE, NFC, Weightless, HomePlugGP, 802.11ah, 802.15.4e, WirelessHART, DASH7, ANT+, LTE-A, LoRaWAN, etc.	Dice, e	etc.		

➢ IoT Datalink protocols:

- o includes PHY and MAC layer protocols
- PHY & MAC combined by most standards

IEEE 802.15.4 (1)

- Most commonly used IoT standard for MAC
- > Defines frame format, headers, node communication, etc.
- IEEE 802.15.4e for low-cost and low-data-rate devices
- Easy installation using a compact protocol stack
- > Applications: Home and building automation, Automotive networks, etc.
- Criticisms on MAC reliability, unbounded latency, and susceptibility to interference and multipath fading

Protocols Utilizing IEEE 802.15.4

➤ ZigBee:

- ZigBee Alliance defines upper-layer components as well as application profiles
- o open global standard to address low-cost, low-power wireless IoT
- o unlicensed bands
- > 6LoWPAN :
 - IPv6 adaptation layer by IETF 6LoWPAN
 - header compression and IPv6 enhancements
- ZigBee IP:
 - evolution of the ZigBee protocol stack
 - o adopts the 6LoWPAN adaptation layer. IPv6 network layer, and RPL routing protocol
 - improvements to IP security

➢ WirelessHART :

- o offers a time-synchronized, self-organizing, and self-healing mesh architecture
- IEEE 802.15.4-2006 over the 2.4 GHz frequency band

ZigBee

- Layer 4 and above (PHY and MAC by 802.15.4)
- Star, peer-to-peer, mesh topologies
- Device object functions: device role, device discovery, network join, and security
- Large range of IoT applications: building automation, home automation, and healthcare

Bluetooth Low Energy (BLE)

- For low data-rate, better power saving, massive number of IoT devices
- > BLE's consumption nearly half of classic Bluetooth device
- Topology: star, mesh, peer-to-peer, peer-to-multipeer
- Range up to 400m
- Large of IoT applications: Healthcare, Activity trackers, audio HS, etc.

Z-Wave

- A master node manages a Zwave network of nodes
- Logical Zwave network has 1 Home ID and multiple (up to 232) nodes
- Node of one network cannot communicate with nodes of other networks
- Devices not in range can communicate via different nodes (healing)
- Topology: peer-to-peer
- > Typically for home automation, wearable healthcare

Wireless HART

- HART Highway Addressable Remote Transducer to support large number of IoT devices (analog and digital sensors)
- ➢ Wireless HART → wireless version of HART; easier to implement; common app-layer; wired HART lacks Network-layer
- Wireless HART:
 - o Based on 802.15.4
 - Mesh topology, network graph to handle routing
 - Network manager as supervisor

LoRA

- ➢ LoRa and LoRaWAN are different: LoRaWAN protocol for WAN; LoRa technology for WAN → non-cellular modulation tech
- Very small message capacity
- Usually requires its own network gateway

NB-IoT

- For very low data-rate devices to mobile battery-powered networks
- Cellular standard for IoT devices; non IP-based protocol
- Send/receive small amounts of data
- Message-based communication; handle a lot more data than other low power protocols

SigFox

- Proprietary low-power WAN network; uplink only
- Works well for low-power devices transmitting infrequently
- Wide coverage
- Poor link budget for downlink
- Supporting mobile is a problem

IoT Access Technologies summary

Technology	Frequency	Data Rate	Range	Power Usage	Cost
2G / 3G	Cellular Band	384 Kbps / 10 Mbps	Several Km	High	High
BLE	2.4 GHz	1,2,3 Mbps	1, 10, 100 m	Low	Low
802.15.4	Sub GHz, 2.4 GHz	40, 250 Kbps	1—75 m	Low	Low
LoRa	Sub GHz	< 50 Kbps	1.5 – 4.5 Km	Low	Medium
NB-IoT	Cellular Band	0.1 – 1 Mbps	Several Km	Medium	High
SigFox	Sub GHz	< 1 Kbps	Several Km	Low	Medium
WiFi	Sub GHz, 2.4 GHz, 5 GHz	0.1 – 54 Mbps	< 100 m	Medium	Low
WirelessHART	2.4 GHz	250 Kbps	~ 100 m	Medium	Medium
Zigbee	2.4 GHz	250 Kbps	~ 100 m	Low	Medium
Z-Wave	Sub GHz	40 Kbps	~ 30 m	Low	Medium
5G	30 GHz	10 Gbps	400 m	High	Hogh

Network access protocols - summary

WPAN: Wireless Personal Area Network WHAN: Wireless Home Area Network WFAN: Wireless Field (or Factory) Area Network WLAN: Wireless Local Area Network WNAN: Wireless Neighborhood Area Network WWAN: Wireless Wide Area Network LPWA: Low Power Wide Area

Network access protocols - summary

Exercise: Choosing the Right Protocol

- Objective: Recommend the best network access protocol for different IoT use cases.
 Instructions:
- 1. In pairs or small groups, review the scenarios below.
- 2. For each scenario, choose the most suitable protocol (WiFi, Zigbee, Bluetooth, LoRaWAN, Cellular) based on:
 - I. Range
 - II. Power Consumption
 - III. Data Rate

Scenarios:

- *1. Smart Home Lighting: Remote-controlled light bulbs.*
- 2. Farm Sensors: Soil moisture sensors across a large field.
- *3. Fitness Tracker*: Wristband syncing data to a phone.
- 4. City Parking Sensors: Notify drivers of available spots.

Time: 10 minutes

Tip: Focus on the *input (sensor)*, *output (actuator)*, and *intelligence (smart object)* of the system.

IoT Device Placement

- Placement of IoT devices (sensors and actuators) requires to take into account:
 - IoT device properties: input/output rate, range & direction, latency, sensitivity, and more
 - IoT Access protocol properties: frequency, data rate, range, power usage, cost, and more
 - Application domain (industry, healthcare, agriculture, etc.)
 - Available budget
 - Geospatial characteristics (buildings, open space, etc.)

IoT Placement Taxonomy

IoT Placement Taxonomy – Constraints and reqs.

IoT Placement Taxonomy – Algs. placement

IoT Placement Taxonomy – placement properties

IoT device placement in IoT wireless networks

- > Optimal sensor placement has proven to be NP-hard
- Placement categories:
 - Static: optimization is performed at the time of deployment
 - > Dynamic: optimization is performed while the IoT network is operational
- Design schemes for placement at various layers:
 - Network-layer: multi-hop route setup, network data aggregation, hierarchical network topology, etc.
 - MAC-layer: collision avoidance, minimizing idle listeners, power control, etc.
 - > App-layer: adaptive nodes activation, load balancing, query optimization, etc.

Static Placement approaches

- Prior to network startup
- Metrics independent of network state:
 - Area coverage
 - Inter-device distance
- Classification based on:

Static Placement: deployment methodology

- Controlled deployment: indoor applications of IoT, 2-D/3-D space setups
- Random deployment (R-random): often the only option, useful during emergency response scenarios, better placement strategy for fault-tolerance

Static Placement: optimization objectives (1)

- Desired goals: increasing coverage, strong network connectivity, extending network lifetime, boosting the data fidelity
- Using: least amount of resources
- Maximizing area coverage in an area of interest:

Grid structure:

- O Random deployment is assumed
- O Least exposure path is identified (Dijkstra's algorithm), probability of detection is calculated
- O If probability < threshold, more IoT devices
- O Procedure repeated until required coverage is reached

Static Placement: optimization objectives (2)

- Desired goals: increasing coverage, strong network connectivity, extending network lifetime, boosting the data fidelity
- Using: least amount of resources
- Maximizing area coverage in an area of interest:

Triangular grid:

- O Coverage can be controlled by adjusting the inter-node distance "d"
- O 100% coverage is possible if d = $\sqrt{3r}$ where r is the sensing range
- Communication range >> r → connectivity not an issue

Static Placement: optimization objectives (3)

Maximizing connectivity

- If communication range is limited, connectivity becomes an issue
- Connectivity issue can be tackled by using relay devices
- Sensor place for complete coverage and connectivity

r-strip:

- O Devices on an r-strip are connected
- O The r-strips are aligned for even values of the integer k
- O Shifted horizontally r/2 for odd values of k
- O **Goal**: fill gaps in coverage with the least overlap among the r-disks that define the boundary of the sensing range
- O Shaded disks for connectivity

Dynamic Placement

- Traffic patterns can change based on the monitored events
- Load may not be balanced among the IoT devices
- Application-level interest can vary over time
- Available network resources may change as new devices join the network, or as older devices run out of energy
- Dynamically repositioning devices at runtime (network is operational) is essential to further improve the performance of the network
- Relocating devices during regular network operation is very challenging. It requires:
 - o continual monitoring of the network state
 - o analysis of events happening in the vicinity of the device
 - o careful handling since it can potentially cause disruption in data delivery
- Schemes for dynamic device positioning can be categorized:
 - 1. Post-deployment IoT device relocation
 - 2. On-demand repositioning of IoT devices

Dynamic Placement -- Post-deployment

- At the conclusion of the device deployment phase
- Relocation process should be lightweight and in reasonable time

Voronoi polygon:

- O to assess the coverage
- Every IoT device Si forms a Voronoi polygon with respect to the position of its neighboring devices
- O The part of the polygon that lies outside the sensing range is not covered by Si
- O If there are uncovered areas within the polygon, the sensor should move to cover them
- O 3 methods: vector-based (VEC), Voronoi-based (VOR) and Minimax

Conclusion

- Things have communication properties
- > Things rely on Network access technologies for operation
- > Datalink protocols combine both PHY and MAC protocols and standards
- ZigBee, BLE, WiFi, WirelessHART, Z-Wave, and more, are short-range protocols
- LoRa, NB-IoT, SigFox and more, are long-range protocols
- Network access protocol and sensor characteristics play a crucial role in device placement
- We analyze both static and dynamic approaches for IoT device placement in IoT wireless networks

References

Main reference for IoT access technologies:

Al-Fuqaha, Ala, et al. "Internet of things: A survey on enabling technologies, protocols, and applications." IEEE communications surveys & tutorials 17.4 (2015): 2347-2376.

Main reference for IoT device placement:

Younis, Mohamed, and Kemal Akkaya. "Strategies and techniques for node placement in wireless sensor networks: A survey." Ad Hoc Networks 6.4 (2008): 621-655.

Thank you

https://gbouloukakis.com/courses/csc4255-w25/