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Chapter 6
Machine Learning for IoT Systems

Ahmed Khattab and Nouran Youssry

Abstract The rapid increase in the number of smart devices hosting sophisticated 
applications is significantly affecting the landscape of the information com- 
munication technology industry. The Internet of Things (IoT) is gaining popular-
ity and importance in man’s everyday life. However, the IoT challenges also 
increase with its evolution. The urge for IoT improvement and continuous 
enhancement becomes more important. Machine learning techniques are recently 
being exploit- ed within IoT systems to leverage their potential. This chapter com-
prehensively surveys of the use of algorithms that exploit machine learning in IoT 
systems. We classify such machine learning-based IoT algorithms into those 
which provide ef- ficient solutions to the IoT basic operation challenges, such as 
localization, clus- tering, routing and data aggregation, and those which target 
performance-related challenges, such as congestion control, fault detection, 
resource management and security.

Keywords Internet of Things (IoT) · Wireless sensor network (WSN) · Machine 
learning · Unsupervised learning · Supervised learning · Fuzzy logic

6.1  Introduction

The Internet of Things (IoT) is a networking paradigm that offers pervasive and 
distributed services in the move towards ubiquitous computing. IoT is a network of 
objects or things that communicate with each other and with the surrounding envi-
ronment and share information through the Internet. IoT enables millions of devices, 
including sensors and smart phones/devices, to be connected for performing differ-
ent tasks. According to the International Data Cooperation (IDC), the number of 
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IoT devices worldwide will exceed 50 billion by 2020 producing more than 60 ZB 
of data (Van der 2017; Sam 2016).

Wireless Sensor Networks (WSNs) are playing a main role in IoT. WSNs have 
attracted significant attention in recent years. A WSN is composed of a set of 
application- specific sensor nodes equipped with communication modules. Such 
nodes gather data from their environment to monitor and record target conditions at 
diverse locations. While there are sensors that measure almost every environmental 
aspect, the widely monitored parameters are air temperature and humidity, wind 
speed and direction, illumination intensity, flow pressure, vibration intensity, sound 
intensity, power-line voltage, pollution levels, chemical concentrations, and vital 
body functions. WSNs are powerful in developing application-specific systems.

WSNs joins the IoT networking paradigm when the sensor nodes dynamically 
connect to the Internet to cooperate to achieve their tasks. Both IoT and WSNs face 
several challenges and issues that should be addressed. Examples include energy 
efficiency, node localization and clustering, event scheduling, route establishment, 
data aggregation, fault detection and data security. Exploiting machine learning pro-
vides solutions to such problems. Machine learning could significantly boost the 
performance and distributive characteristic of IoT.

Machine learning (ML) emerged as an artificial intelligence (AI) technique in the 
late 1950s (Ayodele 2010). Since then, its algorithms gradually evolved to become 
more robust, effective and accurate. Recently, ML classification and regressing 
techniques have been widely exploited to improve the performance of many of 
application domains such as bioinformatics, facial and speech recognition, agricul-
ture monitoring, fraud detection and marketing.

Machine learning could be used to improve the performance of various IoT sys-
tems by exploiting the history of the collected data of given tasks to autonomously 
optimize the performance without the need to re-program the system. More specifi-
cally, the main reasons that make ML important in IoT applications are:

• The rapidly changing dynamic nature of the environments typically monitored 
by IoT systems. Therefore, developing IoT systems that efficiently operate by 
autonomously adapting to such changes is required.

• The unreachable and dangerous settings in which exploratory IoT applications, 
such as wastewater and volcano eruption monitoring, operate to collect new 
knowledge. Consequently, the ability of ML-based IoT systems to self-calibrate 
to the acquired new knowledge is needed to ensure robustness.

• Machine learning does not only improve the autonomous control in IoT applica-
tions but also ameliorate their intelligent decision-making capabilities.

Nevertheless, the use of ML in IoT still face several challenges that should be 
carefully considered. For instance, IoT devices are resource limited. Using ML to 
extract consensus relationships between the collected data samples and predicting 
the accurate hypotheses significantly drain the energy of the IoT devices. This 
necessitates trading-off the ML algorithm’s computational complexity and the tar-
geted accuracy of the learning process.
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In this chapter, we present a brief introduction of IoT: its concept, history, archi-
tecture and its processing data layers. We also present a comprehensive survey of 
machine learning techniques classifying them into five categories which are 
 supervised learning, unsupervised learning, reinforcement learning, evolutionary 
computational and fuzzy logic techniques. We present a detailed study of the appli-
cations of machine learning techniques in solving IoT challenges. Moreover, we 
classify those applications into operational applications which are concerned with 
the main functions of the IoT system and performance applications which are more 
concerned with enhancing the performance of IoT systems.

The remainder of the chapter is organized as follows. Section 6.2 briefly intro-
duces IoT. Section 6.3 overviews of the different machine learning algorithms. The 
role of machine learning in solving operational and performance challenges in IoT 
and WSN systems are discussed in Sects. 6.4 and 6.5, respectively. Finally, our 
conclusions are drawn in Sect. 6.6.

6.2  IoT Overview

IoT is a network of objects “things” which sense, accumulate and transfer data over 
the Internet without any human intervention. Kevin Ashton, British technology pio-
neer and co-founder of MIT’s Auto-ID Center, first used the term “Internet of 
Things” in 1999. Ashton used the term to illustrate the power of using Radio- 
Frequency Identification (RFID) tags to connect goods to the Internet, then count 
and track them without needing human intervention. Since then, the idea of globally 
connecting computers and servers through the Internet has been expanded to the 
Internet of Things in which anything can be connected and accessed through the 
Internet. This created a whole new connectivity dimension where anything can be 
connected at anytime and anyplace (Vashi et al. 2017). The industries that are adopt-
ing IoT are expected to achieve revenue growth of 22% (Kotha and Gupta 2018).

Several IoT architectures have been developed to handle the use of heteroge-
neous devices in such systems. The number and type of used devices, the applica-
tion and the amount of collected and processed data control the choice of the most 
suitable architecture to be used.

One simple IoT architectural model is the three-layer model shown in Fig. 6.1 
which consists of perception, network and application layers (Ghasempour 2019).

• Perception Layer: This is the physical layer of the IoT system. It is composed of 
the sensors which gather information about the environment and actuators which 
implement the actions that accordingly change the environment. A temperature 
controller in an air conditioner is an example of an actuator.

• Network layer: This is the transmission layer that is responsible for handling the 
routing decisions. It is also handling the transmission and processing of the data 
received from or transmitted to the perception layer.
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• Application Layer: This layer delivers application-specific services to end users. 
It also provides the interface between humans and the IoT system.

Such three-layer architecture represents the simplest IoT architecture. As the 
data size of the system increase, this architecture becomes inefficient. That is why 
the five-layer model shown in Fig. 6.1 was proposed in (Sethi and Sarangi 2017), 
adding the following three layers to the perception and application layers:

• Transport Layer: This layer handovers data from the perception layer to the pro-
cessing layer and actions in the reverse direction. Several network types are used 
for this purpose such as wireless LAN, NB-IoT, LoRA, RFID, and NFC.

• Processing Layer: This is the middleware layer that stores and processes the huge 
amounts of data received from the transport layer. It also prepares the data for the 
application layer. The processing layer manages and provides a wide range of 
services to the lower layers. Cloud computing, databases and big data analysis 
are examples of the technologies used in this layer.

• Business Layer: This layer encompasses the overall IoT application alongside its 
business and profit models. It is also responsible for the end users’ privacy and 
security.

Another architecture presented in (Navani et al. 2017) proposed the same divi-
sion of layers with only changing their names. The layers in this architecture are the 
object, object abstraction, service management, application and business layers.

Cloud computing was originally used to implement the processing layer because 
it provides significant flexibility and scalability. A cloud database management sys-
tem based on a five-layer architecture was introduced in (Alam et  al. 2013). 
Significant efforts were carried out to enhance cloud computing system’s database 
with query processing mechanism in (Malhotra et al. 2018) and to enhance the task 
scheduler as in (Ali et al. 2019). As energy is known to be a scarce resource in IoT 

Fig. 6.1 IoT architecture 
models
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systems, the authors of (Ali and Alam 2016) proposed energy management 
techniques for cloud computing environments. IoT devices generate valuable data 
readings that need to be transferred. Therefore, merging cloud computing technology 
with big data analysis (Alam and Shakil 2016) is a very important in many plat-
forms as discussed in (Khan et al. 2016, 2018, 2019a, b, c, d; Shakil et al. 2017).

Lately, the increase of real-time applications requiring the least possible latency 
caused a migration towards another processing architectures that involve either fog 
or edge computing. In fog computing paradigms, the data and its processing take 
place in decentralized computing structures that physically reside between the data 
sources and the cloud. Hence, fog computing results in low-latency and is suitable 
for time-sensitive IoT applications as data is processed close to where it is origi-
nated. Its efficiency is also higher as less data is uploaded to the cloud. On the other 
hand, data processing takes place either on the IoT device generating the data or on 
a local gateway device that resides in the vicinity of the IoT device in the edge com-
puting paradigm. Thus, both fog and edge computing reduce the dependence on the 
cloud infrastructure in data analysis, which in turn reduce the system latency, and 
hence, allow the data-driven decisions making process much faster. However, fog 
computing is the better option where data aggregation from different sources is 
needed whereas edge computing is better where the least latency is allowed. The 
differences between cloud computing, fog computing and edge computing are illus-
trated in Fig. 6.2.

Fig. 6.2 Mapping IoT processing layers to system devices
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6.3  Machine Learning Taxonomy

Machine learning techniques are designed to automatically benefit from prior expe-
rience in acting in the future without explicit reprogramming. Existing ML 
approaches are typically classified as either supervised, unsupervised or reinforce-
ment learning. However, artificial intelligence techniques have recently played a 
great role in enhancing ML techniques. Therefore, this chapter categorizes ML 
techniques into supervised learning, unsupervised learning, reinforced learning, 
evolutionary computation and fuzzy logic. This section briefly overviews the dif- 
ferent ML approaches in addition to their most updated algorithms in the context of 
IoT and WSNs.

6.3.1  Supervised Learning

In supervised learning, the input and targeted output data are both labeled for clas-
sification. This presents the learning base on which future data processing is cen-
tered. The key supervised learning algorithms are:

 1. k-nearest Neighbor (k-NN): In this supervised learning approach, a data sample 
is classified according to the labels of nearby data samples. Simple methods 
(e.g., the Euclidean distance between the IoT devices) are typically used to com-
pute the average measurements of neighboring devices within a specific range. It 
is a simple computational algorithm but may be inaccurate in large data sets. In 
IoT, k-NN is used in fault detection (Warriach and Tei 2017) and data aggrega-
tion approaches (Li and Parker 2014).

 2. Support Vector Machine (SVM): Decision planes are used in SVM approaches 
to define decision boundaries. A decision plane separates groups of objects each 
with different class memberships as depicted by the example shown in Fig. 6.3. 

Fig. 6.3 Support vector 
machine example
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SVM supervised learning is typically used for localization problems (Kang et al. 
2018) to detect malicious behaviors and to address several security issues in IoT 
and WSNs (Zidi et al. 2018) due to its high accuracy.

 3. Neural Network (NN): An artificial neural network (ANN) imitates biological 
neurons by interconnecting layers of artificial neurons. These artificial neurons 
map the different sets of input data onto a set of appropriate outputs. Figure 6.4 
presents the model of a neural network. Even though ANNs provide solutions to 
non-linear and complex problems, they are computationally complex. Artificial 
NNs improve the efficiency of IoT localization (Banihashemian et al. 2018; El 
Assaf et al. 2016), detect faulty nodes (Chanak and Banerjee 2016), and establish 
routing (Mehmood et al. 2017).

 4. Bayesian Interface: Unlike most machine learning algorithms, Bayesian infer-
ence uses a reasonably small number of samples for training. Bayesian methods 
efficiently learn uncertain perceptions by adapting probability distributions 
while avoiding overfitting. However, they need prior knowledge about the envi-
ronment. Bayesian interface is suitable for fault detection (Warriach and Tei 
2017), cluster head selection (Jafarizadeh et al. 2017) and localization (Sun et al. 
2017; Wang et al. 2017; Guo et al. 2018) approaches.

 5. Decision Tree (DT): A tree-like model of decision or classification is used in 
such a decision-support tool. DTs are created using a set of if-then conditions. 
For boosting DT accuracy, the random forest (RF) algorithm is introduced. RF is 
an ensemble decision tree method that operates by constructing multiple classi-
fiers. Each classifier is a decision tree. RFs are used in intrusion detection as in 
(Varsha et al. 2017).

6.3.2  Unsupervised Learning

Unsupervised learning algorithms operate over datasets in which the input data does 
not have labeled responses. Inferences are drawn in such algorithms by classifying 
the unlabeled input data into groups that are called clusters.

 1. Principal Component Analysis (PCA): PCA reduces the dimension of a large set 
of variables to a much smaller set that contains almost all the information in the 

Fig. 6.4 Neural networks’ 
structure
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original large set. PCA application in IoT systems for data dimensionality reduc-
tion takes place either at the sensor or the cluster head levels. PCA results in a 
reduction in the communication overhead (Wang et al. 2019) which is very use-
ful in data aggregation (Liu et al. 2017).

 2. k-means Clustering: It is used to classify different data in classes or clusters (Jain 
et al. 2018). k random centroids are initially chosen. The other nodes then join 
the clusters of the nearest centroid. Averaging over the nodes in each cluster, new 
centroids are determined. The algorithm repeats the previous steps until conver-
gence is reached.

 3. Self-Organizing Maps (SOM): A self-organizing map is also considered as a 
method for dimensionality reduction as explained in (Miljković 2017). However, 
a SOM is a type of artificial neural network which result in a discretized low- 
dimension representation of the input data, called a map, using unsupervised 
learning for training. SOMs are very suitable to be used in building clusters in 
IoT.

6.3.3  Reinforcement Learning

Reinforcement learning (RL) does not have knowledge about the inputs nor their 
corresponding outputs. It is a very important ML technique whose idea, illustrated 
in Fig. 6.5, is that an agent will learn from the environment by interacting with it and 
receiving rewards for performing actions. Over the past few years, RL algorithms 
have been used for designing routing protocols in IoT systems and WSNs to reduce 
the energy consumption and improve the network performance (Habib et al. 2018).

An extensively used RL algorithm is Q-learning. First, a Q table is initialized, 
then an action a is performed. A reward is then measured to update the Q table. In 
order to assess how good to take a certain action a at a particular state s, the action- 
value function Q(s, a) is learnt by the algorithm. Initially, the action a is randomly 
chosen until the Q table is constructed, then the best action is chosen from it.

Fig. 6.5 Reinforcement 
learning concept
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6.3.4  Evolutionary Computation

Unlike other ML approaches, evolutionary computation techniques solve problems 
using computational models that mimic the biological behavior of either humans or 
animals in problem solving tasks.

 1. Genetic Algorithms (GA): Such algorithms use biologically inspired heuristic 
search techniques to find the best solution for problems with large search spaces. 
GAs work in parallel on a population of solutions rather than processing a single 
solution. First, a chromosome structure is defined, typically in the form of an 
array of bits as shown in Fig. 6.6. Then, an initial chromosomes population is 
randomly generated for which fitness is evaluated. Chromosomes with higher 
fit-ness are selected in the selection process. A crossover process combines two 
parents to introduce a new child to the population. Finally, mutation randomly 
up-dates the parents to introduce new children. An example GA cycle is shown 
in Fig. 6.6. GAs are suitable for data aggregation approaches and searching for 
optimal clusters.

 2. Ant Colony Optimization (ACO): ACO probabilistically searches for the optimal 
path in a graph in ways similar to how ants find the path between a food source 
and the colony. First, ants move randomly, leaving traces or pheromone on the 
taken path. More pheromone on a path indicates that the path probability to be 
the shortest/optimum one is high. This algorithm is efficient for routing in IoT.

 3. Particle Swarm Optimization (PSO): PSO is inspired by swarm theory, fish 
schooling, and bird flocking. As an evolutionary computation approach, PSO 
searches for the best solution in a population. The algorithm starts with a random 

Fig. 6.6 Genetic algorithm example
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population of solutions referred to as particles. A fitness function is used to com-
pute the particle’s fitness value which is optimized in each generation. IoT clus-
tering algorithms recently exploit PSO to improve their performance.

6.3.5  Fuzzy Logic

Traditional ML techniques used to work with binary values: either 0 (False) and 1 
(True). However, fuzzy logic (FL) imitates the way of decision making in a human 
which considers all the possibilities between 0 and 1 digital values (Umarikar 2003). 
FL introduces the concept of degree of truth. Its value does not have to be exactly 1. 
It can be any real value between 0 and 1 instead. Fuzzy logic is an attractive solution 
for localization typically used to combine the node’s residual energy, centrality, and 
distance from the data sink node for electing the best cluster heads (Umarikar 2003).

6.4  Machine Learning for IoT Basic Operation

In this chapter, we categorize the challenges that face IoT systems into basic opera-
tion and performance-related challenges. In this section, we take a closer look on 
how ML is making an effective contribution in solving the basic system operation 
challenges such as node localization, clusters formation, routing, and data aggrega-
tion. Figure 6.7 summarizes how ML is used in addressing such challenges.

6.4.1  Node Localization

The procedure of determining the geographic coordinates of the nodes is known as 
localization. As much as it is crucial to be aware of IoT nodes’ locations, it is 
impractical to use GPS hardware in every node as it dramatically consumes the 
nodes’ energy. Alternatively, localization can exploit machine learning alongside 
some parameters such as the received signal strength (RSS) and the time and angle 
of arrival.

An approach was introduced in (Sun et al. 2018) to use neural networks in local-
izing WSN nodes. The proposed solution uses the variations of the RSS between the 
sensor nodes. RSS is measured from all the nodes once without the presence of any 
target, then with the target presence. The ANN uses the difference in RSS values 
and the corresponding matrix indices as inputs. The ANN outputs are the nodes’ 
locations. The ANN is trained to approximate a nonlinear function to map the inputs 
and outputs.

The use of SVM in localization was proposed in (Kim et al. 2013). What makes 
this approach different is the use of ensemble SVM technique. The ensemble 
 technique employs multiple ML techniques, then decides the result by voting. In 
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(Kim et al. 2013), the authors used multiple SVMs by dividing the WSN to many 
subnetworks. Each subnetwork is trained using SVM. The resulting sub-predictions 
are then combined as ensemble combination. Each training problem has a smaller 
size compared to the size of the original problem. Consequently, better results are 
obtained. Another advantage of having fewer sensor nodes per subnetwork is the 
reduction in the transmission power and communication energy as the nodes become 
close to each other. The idea of treating localization problem as regression problem 
in-stead of a classification one was introduced in (Bhatti 2018). The algorithm is 
divided into two phases. The training dataset for localization in WSN contains of the 
feature vectors related to each anchor and its true location coordinates which are 
already known. The feature vector of an anchor node is composed of the RSS values 
of the signals received from other nodes as measured by that anchor node. In the 
second phase, the sensor nodes’ coordinates are estimated. The input of the learned 
model is the target WSN nodes’ feature vectors. The produced output is the nodes’ 
coordinates. Comparing the extended feature vector (readings from anchor and 
 sensor nodes) versus the reduced feature vectors (readings from anchor vectors 
only) showed that the extended features provide a better prediction accuracy.

Fig. 6.7 Machine learning exploitation for IoT basic operation
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Another localization technique was explained in (Kumar 2018) using fuzzy logic 
ML technique. The proposed technique was a hybrid Sugeno-Mamdani fuzzy sys-
tem using RSS for localization which outperformed the traditional fuzzy logic. The 
authors then proposed the idea of cooperative localization. In such scheme, when-
ever an unknown node gets localized, it acts as anchor or landmark for the next 
iteration and transmits beacons to other unknown nodes. Since it has already been 
localized now and can broadcast beacons which contain its position, identity to be 
received by other unknown nodes. A low-complexity centroid-based scheme is pro-
posed in (Kumar 2018). The resulting precision error is high. Hence, the authors 
used a FL algorithm to improve the nodes’ location estimation based on FL weights. 
For more optimization, the consequences of unbalanced node placements in non- 
uniform networks are alleviated using PSO. This approach proved its efficiency in 
networks with few nodes and limited sensing coverage. As the number of nodes 
and/or the sensing coverage increase, integrating extreme machine learning tech- 
niques (as NN) with the centroid scheme showed better results in (Phoemphon 
et al. 2018).

6.4.2  Clustering

IoT systems are energy-constrained networks. Transmitting all the data packets to 
the sink node is inefficient and dramatically consumes the nodes’ energy. A local 
aggregator, or a cluster head (CH), is used to improve the energy-efficiency by col-
lecting the data from the cluster members within its vicinity and transmitting only 
the aggregation of the data to the sink node. Machine learning algorithms can help 
in deciding the number of clusters needed and electing the cluster heads.

An integrated approach in which clustering is performed using a SOM phase fol-
lowed by a k-means phase was introduced in (Ahmadnezhad and Rezaee 2015). The 
SOM input parameters are the energy levels and the nodes’ coordinates. The weight 
vectors of the SOM map units are selected nodes with maximum energy levels. 
Such maximum-energy nodes attract the nearest lower-energy nodes, thereby, creat-
ing energy-balanced clusters. Fuzzy logic techniques can also be used in electing 
cluster heads as proved in (Nayak and Devulapalli 2016). The authors of (Nayak 
and Devulapalli 2016) proposed a fuzzy logic clustering approach using the battery 
power, node mobility and node centrality as input parameters to a FL system that 
finds the probability of a node to serve as a cluster head. Simulation results showed 
that the fuzzy logic cluster head election system outperforms the well-known 
LEACH clustering protocol in terms of the network lifetime defined as the time 
until first node dies, last node dies or half the nodes die.

A cluster formulation method in which a node individually decides its ability to 
serve as a CH rather than executing an election process is presented in (Forster and 
Murphy 2006). This clustering method exploits Q-learning alongside a set of 
dynamic parameters such as the nodes’ energy levels. A reinforcement learning 
technique was also used in (Soni and Shrivastava 2018) to implement an on-demand 
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mobile sink traversal. Recently, evolutionary computation algorithms are used 
showing enhancement in solving the clustering problem as in (Wang et al. 2018) 
where ACO-based approach is used. Likewise, Energy Centers Searching using 
Particle Swarm Optimization (EC-PSO) is proposed in (Wang et al. 2019). A geo-
metric method is initially used to elect the CHs. Then, EC-PSO performs clustering 
when the nodes’ energies start to be heterogeneous. EC-PSO elects the nodes close 
to the energy center to be CHs using an improved PSO technique that searches the 
energy centers. PSO algorithm increases the network lifetime as proved in (Yadav 
et al. 2018).

6.4.3  Routing

Designing a routing protocol for IoT systems is very challenging due to their nature 
of restricted processing, compact memory, and low bandwidth. Routing protocols 
address several issues including scalability, energy utilization, data coverage, and 
fault tolerance while optimizing their tradeoffs. Machine learning can effectively 
address this challenge as it continuously discovers the optimal routing paths that 
result in the best tradeoffs is the dynamically changing IoT networks. ML also 
reduces the complexity of a typical routing problem by breaking it down to subrout-
ing problems that only consider the local neighbors of the nodes. Finally, ML effec-
tively achieves the routing QoS requirements despite the use of computationally 
inexpensive algorithms and classifiers (Alsheikh et al. 2014).

A wireless routing protocol that uses SOM alongside a modified radial-based 
neural network was presented in (Hoomod and Jebur 2018). It starts with clustering 
the networks using SOM as previously explained. Then, an ANN will be responsible 
for finding the optimal path. However, the used ANN is modified by having the 
weights to the output layer computed and attuned using the parallel Moore-Penrose 
generalized pseudo-inverse which accelerates the learning process and accuracy. 
Taking time as a comparison metric, the proposed protocol outperformed the tradi-
tional Dijkstra in fixed and mobile topologies.

FL was also used in solving the routing challenge. In (Mottaghinia and Ghaffari 
2018), two fuzzy logic-based systems were proposed to route data messages and 
specify their priority. When a source node encounters other nodes, it checks the data 
delivery probability of each node alongside the node’s energy. A node is not consid-
ered as a potential router if either the residual energy and delivery probability is low, 
or both is low. Ultimately, the fuzzy system will select the best candidate for data 
transmission from the nodes’ neighbors. The proposed approach shows its effi-
ciency by increasing the data delivery rate and decreasing the associated delay.

Another approach combines FL (for clustering) and ACO (for routing) (Arjunan 
and Sujatha 2018). The node’s residual energy, degree, centrality and distance to 
both the Base Station (BS) and neighboring nodes are used as inputs to the FL-based 
clustering algorithm which maximizes the network lifetime while balancing the 
nodes’ energies. ACO is used to get the shortest paths. Also, periodic random choice 
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of paths occurs to exploit unused paths and to balance the nodes’ energies. Again, 
FL is used in (Thangaramya et al. 2019) but this time for enhancing the NN to be 
used in discovering energy-efficient routes. The NN discovers new routes by inves-
tigating the consumed energy in the nodes and the routing patterns. The routes’ 
weights are attuned by applying FL rules to reach the most efficient route.

6.4.4  Data Aggregation

Data aggregation is very crucial to reduce the IoT system power consumption. It 
combines and summarizes the data packets of several nodes properly at the cluster 
head. Data aggregation decreases the number of transmitted data packets, thereby, 
increases the bandwidth utilization and minimizes the energy consumption. In what 
follows, we demonstrate the power of machine learning techniques in this field.

First, (Pinto et al. 2014) proposed using genetic algorithms in information fusion 
to perform a trade-off between the Quality of Fusion (QoF) and efficiency by 
dynamically adjusting the sending probability. According to the effect of a node’s 
input on the system performance, each node is given a reward that will decide 
whether to send data or fuse it with another node instead.

A priority-based data aggregation approach was introduced in (Ghate and 
Vijayakumar 2018). It works in supervised mode if the input data has class labels. 
For example, the health issue or the disease may be known previously in certain 
cases, hence, it can be used as a class label in the output vector. Alternatively, this 
approach may work in unsupervised mode with input data lacking class labels. A 
novel approach combining PCA and Angle Optimized Global Embedding (AOGE) 
was introduced to tackle the concept drift problem (Liu et al. 2017). In ML context, 
concept drift implies that the target variable, to be predicted by the model, has time- 
varying statistical properties that vary in unforeseen ways. Consequently, the pre-
diction process results in less accurate predictions with time. AOGE takes advantage 
of several techniques. The projection variance of sampled data is first analyzed. 
Then, PCA is used to define the dispersion in the data. The principal components 
are then selected considering the maximized projection variance. Unlike PCA, 
AOGE analyzes the projection angle of sampled data to choose the principal com-
ponents. Consequently, AOGE outperforms PCA when tested using real-life datas-
ets with significantly noisy data. This implies that even though PCA and AOGE 
separately detect concept drift in a data stream, their combination is more effective 
and robust in detecting concept drift.
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6.5  Machine Learning for IoT Performance Aspects

While the basic operational challenges are directly associated with functional 
behavior of IoT systems, performance aspects are mostly associated with perfor-
mance enhancement. The performance enhancing requirements include fault detec-
tion, mitigation and controlling congestion provide quality of service and maintain 
security. This section sheds the light on the exploitation of machine learning in such 
performance-related aspects (summarized in Fig. 6.8).

6.5.1  Congestion Control

Congestion negatively impacts the performance of IoT applications as it causes 
packet losses, increases the encountered delays, wastes the nodes’ energies and sig-
nificantly degrades the IoT application fidelity. The purpose of IoT and WSN con-
gestion control is to improve the network throughput and reduce the time of data 

Fig. 6.8 Machine learning exploitation for enhancing IoT performance
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transmission delay. Thus motivated, the authors of (Alaa 2018) proposed to have a 
congestion detection phase followed by a congestion monitoring phase. The system 
detects the congestion through measuring the data loss rate. The congestion moni-
toring system is simply an ANN for learning about the congestion scenarios to 
reduce and stop them before they even occur. This approach proved significant 
improvement when compared against the traditional case of not having congestion 
control.

6.5.2  Fault Detection

As explained in (Warriach and Tei 2017), faults occur when one or more of the IoT 
system characteristics or parameters deviate from their normal operation or value. 
Faults occur when node is faulty because of a physical damage, a low battery, com-
munication interference, or environmental interference. An error is defined as an 
incorrect sensing of a state or event in the given space due to a fault. Faults can be 
classified into:

 – Offset fault: This fault occurs when the data always differ from its expected value 
by a constant amount because of faulty calibration of the sensing module.

 – Gain fault: This fault occurs when the rate of change of the sensed data in a 
period of time differs from its expected value.

 – Stuck-at fault: This type of faults happens when the sensed data is constant and 
does not vary with time (zero-variance).

 – Out-of-bounds fault: This fault happens when the values of the sensed data 
exceeds the normal operation bounds.

In (Warriach and Tei 2017), the fault detection problem is changed into a simple 
classification problem where the received data either belongs to a normal or a 
defected class. Three machine learning approaches were used for this purpose: k- 
NN, SVM and Naïve Bayes. k-NN has the least classification error in the least com-
puting time followed by SVM. However, Naïve Bayes showed the worst performance. 
In (Zidi et al. 2018), the authors brought attention to a different kind of faults and 
how to solve it. This fault was the random fault that is defined as an instant error in 
which data is disturbed just for an instant of time. This error causes many positive 
or negative sharp peaks that influence the data of the sensors. These perturbations 
are very fast which makes them more difficult to detect. The authors proposed an 
SVM classifier for detecting instant errors which showed a high accuracy that 
reached 99%. Evolution of the traditional classifiers is proposed in (Javaid et al. 
2019) by implementing Enhanced SVM (ESVM) which combines SVM and 
GA.  Also, the authors implemented Enhanced KNN (EKNN) and Enhanced 
Recurrent Extreme Learning Machine (ERELM) which gives the most accurate 
results. Another classifier was introduced in (Noshad et al. 2019) which uses RF 
algorithm and shows better results compared to SVM and NN.

A. Khattab and N. Youssry



121

6.5.3  Resource Management

To satisfy the enormous resource demands of the various IoT applications, robust 
resource management techniques are needed to minimize the energy consumption 
and the response time. Since IoT systems are dynamic in nature, RL is one of the 
most suitable ML technique in IoT resource management as proposed in (Kumar 
and Krishna 2018). However, RL complexity increases with the increase in action 
pairs. Researchers combined NN and RL to introduce Drift Adaptive Deep 
Reinforcement Learning (DA-DRL) in (Chowdhury et al. 2019) to enhance tradi-
tional RL methods. Another scheduling technique was suggested in (Zhang et al. 
2019) as Q-Learning Scheduling on Time Division Multiple Access (QS-TDMA) to 
improve the real-time reliability.

6.5.4  Security

As IoT systems are resource limited, securing such systems against security at-tacks 
presents an immense challenge. Several approaches for secure authentication in IoT 
systems through cloud computing exist (Kumari et  al. 2018; Alam et  al. 2015). 
However, the majority of contemporary IoT commercial devices suffer severe secu-
rity flaws and vulnerabilities as shown in (Williams et al. 2017). That is why the 
demand for using ML techniques is rapidly growing to save such networks from 
different security attacks. Here, we discuss the major five IoT attacks (Mamdouh 
et al. 2018).

 – Distributed Denial of Service (DDOS) Attack: In this cyber-attack, the attackers 
overload the system making it difficult to be used by its intended users by send-
ing multiple requests to exceed its capacity, and therefore, crushing.

 – Spoofing Attack: Is a cyber-attack where attackers aim to masquerade and 
deceive the system by pretending to be an authorized node to trick them in per-
forming legitimate actions or giving up sensitive data.

 – Malware Attack: Is a cyber-attack in which a malware or a malicious software 
performs activities on the victim’s operating system, usually without the node’s 
knowledge.

 – User to Root (U2R): In this attack, the attacker attempts to escalate a user’s privi-
lege from being limited to become a super user or be able to access the root. This 
is achieved using stolen credentials or through a malware infection.

 – Remote to Local (R2L): In this attack, the attacker imitates a legitimate user to 
gain remote access to a victim device.

In (Doshi et al. 2018), the authors detect DDOS attacks through capturing the 
data traffic and analyzing its features. It was proved that normal IoT traffic differs 
from DDOS traffic in terms of packet size, inter packet arrival, used protocol, the 
bandwidth and node/IP destination. Based on that observation, normal ML 
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 classification techniques such as SVM, k-NN, ANN and Random Forest were used. 
It was shown that Random Forest and k-NN perform best. However, an updated 
technique was presented in (Thamilarasu and Chawla 2019) which combines ML 
and deep learning algorithms to form a deep neural network to detect DDOS attacks 
more precisely. NN is used with cooperation on cloud trace back technique to detect 
DDOS attacks as in (Alam et al. 2015).

Detecting spoofing attacks needs four main stages as illustrated in Fig. 6.9. ML 
techniques are commonly used in the feature detection and attack detection stages. 
In (de Lima Pinto et al. 2018), feature detection was achieved using a k-means algo-
rithm and a k-NN classifier was proposed. Another technique was proposed in 
(Pajouh et al. 2019) that uses PCA in dimension reduction in addition to two classi-
fiers: Naïve Bayes classifier followed by a k-NN classifier. This two-tier classifica-
tion has high detection rates and accurate detection of the U2R and R2L hard-to-detect 
security attacks.

Malware detection was approached as a classification problem using random 
forest and k-NN in (Pajouh et  al. 2019). An interesting approach for intrusion 
detection was shown in (Yu and Tsai 2008) in which each sensor node is equipped 
with an intrusion detection agent (IDA). As nodes cannot trust each other, IDAs 
do not cooperate. A Local Intrusion Detection Component (LIDC) is responsible 
for extracting the local features such as the packet delivery and collision rates, 
delays, number of neighbors, cost of routing and consumed energy. Meanwhile, 
Packet based Intrusion Detection Component (PIDC) infers if a suspected node 
is launching an attack on the host by analyzing the suspected node’s packets and 
investigate the packets’ RSS, the arrival rate of the sensed data and retransmis-
sion rate of the attacker’s packets. Then, SLIPPER machine learning algorithm is 
used for detection.

Finally, securing WSN and IoT middleware using Generative Adversarial 
Networks (GANs) was proposed in (Alshinina and Elleithy 2018). The proposed 
approach is composed of two networks. A generator network that generates fake 
data that mimics the real sensed data and confuses the attacker by combining both 
the fake and real data. A discriminator network is then used to separate the fake data 
from the real data. This does not only protect data from adversaries but also improves 
the data accuracy compared to conventional techniques.

Fig. 6.9 The detection stages of spoofing attacks
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6.6  Concluding Remarks

The unique nature of WSNs and IoT systems gives us no choice but to address their 
challenges and limitations through suitable tools and specified techniques. Here 
comes the need for machine learning techniques either supervised learning, unsu-
pervised learning, reinforcement learning, evolutionary computation or fuzzy logic. 
All such techniques offer different solutions to most of the challenges. In this chap-
ter, we have discussed these solutions for addressing the IoT basic operation chal-
lenges such as node localization, cluster formulation, routing and data aggregation. 
Moreover, we have discussed the role of machine learning in solving the 
performance- related challenges such as congestion control, fault detection, resource 
management and security. We conclude with the following remarks:

• Performance related aspects mainly exploit supervised learning techniques. Such 
challenges are handled as classification tasks where the algorithm needs to pre-
dict discrete value or identify the input data into a particular class. This requires 
prior knowledge and that is why supervised ML techniques are suitable here.

• Evolutionary techniques are used for solving basic operation rather than perfor-
mance related aspects. Their objective is injecting new actions and measuring 
their effect e.g. by imitating ants in reaching their destination. This makes evolu-
tionary technique not suitable for performance challenges which are typically 
modelled as classification tasks.

• Since fuzzy systems are capable of handling uncertainties and giving wide range 
of truth, they are recently being adopted for IoT routing and node localization.

• Resource management is solved using reinforcement learning (Q-learning tech-
nique). IoT systems are very dynamic. Managing their resources also needs a 
dynamic technique that always interacting with the surrounding environment to 
make the right immediate actions. Hence, RL comes as a perfect match here.
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