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Abstract—In Smart Things and smart city applications, IoT
devices generate large amounts of data and deep learning
technologies are used to acquire useful information from it.
Based on the kind of application and data, there are various
non-functional requirements, such as low latency for informa-
tion presentation by MR and privacy for video processing.
To serve these requirements, a computing platform needs to
make appropriate use of computing resources, namely Cloud,
Fog, and Dew. However, there are some technical challenges in
designing such a platform: i) transparently satisfying application
QoS; ii) running the application across various hardware and
OSes without modification; iii) sharing the application context
taking into account the validity of values (temporal locality) and
the data privacy (spatial locality). In this paper, we introduce
Laqista, a novel Cloud-Fog-Dew computing platform. Laqista
serves applications in a serverless manner via the Edgeless
API, which schedules requests and abstracts the details of the
platform. Applications are separated into Logics and Models,
which are converted to lightweight, platform-agnostic formats
such as WebAssembly and ONNX, respectively. Additionally,
the Context Store synchronizes application context among the
nodes, handling the privacy and validity of data. We developed
a prototype implementation of Laqista in Rust and evaluated
its performance. Experimental results show that the Laqista
design has practical performance and is applicable to real-time
applications such as video processing and MR.

Index Terms—Smart Things, Cloud-Fog-Dew Computing,
Serverless Computing, Deep Learning

I. INTRODUCTION

Deep learning technology has enabled advanced informa-
tion processing, leading to smart applications such as Smart
Things, Smart Cities, and the Internet of Things. In deep
learning applications, useful information is extracted from the
data generated by end devices (sensors, smartphones, etc.).
An example is a person-searching system. The simplified
configuration of this application is shown in Figure 1. The
application comprises four steps: i) a client process sends
video frames obtained from surveillance footage to the server,
ii) a server-side program pre-processes the input frames into
vector data and invokes the model, iii) an object detection

Pre/post-process

1.2, 4.5, 5.9
3.0, 2.1, 0.3

...

1.2, 4.5, 5.9
3.0, 2.1, 0.3

...

“human”, “dog”, “cat”, “bird”, ...

“human” ,0,0,0,...

0,   ,0,0,...1
“dog” 1

Video frames
Vector data

Output labels

Label

Object Detection
ModelMap to labels

Convert to vector

Client prcoess

Fig. 1. Configuration of the person-searching system. This system consists
of three parts, namely, the client process that generates video frames, the
server-side pre-/post-process that performs conversion between meaningful
data (images or labels) and vector data, and an object detection model.

model processes the vector data inputs and returns a vector
output, and iv) the server-side program receives the output
and maps it to meaningful information (using labels such as
”dog” or ”human”). Many smart applications are constructed
similarly, that is, data generation, data conversion, and model
inference parts.

According to the use cases and the type of data being
processed, applications and their clients raise non-functional
requirements for executing these processes. For instance, data
collected from Automotive Sensing systems [1], [2] often in-
cludes citizens’ private information. This occurs, for example,
when citizens activities are recorded by dashcam footage. The
recorded data must be processed within a trusted domain,
which can be provided using Fog computing (high-privacy
scenario) [2]–[4]. Another advantage of Fog computing is
lower network latency. Thus, it is suitable for Mixed Re-
ality (MR) as it ensures that users do not feel discomfort
with the interface (low-latency scenario) [5], [6]. Meanwhile,
high inference accuracy is required in trajectory prediction
in autonomous driving systems (high-accuracy scenario) [7],
[8]. Cloud Computing, which can provide abundant resources,
is suitable for this scenario, instead of edge devices with
limited computational resources (e.g., the Jetson Orin series).
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Anderson et al. found that these high-accuracy models fail
to achieve real-time processing. Traffic sign recognition [9]
needs to operate continuously during driving, and even amid
network disconnections caused by vehicle movement (network
disconnection scenario). Therefore, the inference must be
conducted within the car independent from outside computers,
which is called Dew Computing [10].

To serve such diverse scenarios on a single computing plat-
form, three technical challenges should be overcome. First, the
platform must consider the QoS requirements of the clients,
in particular, accuracy, latency, and privacy. Simultaneously,
it has to hide concrete QoS features, that is, how it manages
resources to meet the requirements (transparency principle of
QoS architecture [11]). Owing to the diversity and fluctuating
characteristics of Fog and Dew devices, this transparency
is non-trivial. Second, the application must be able to run
across a heterogeneous environment. In the case of Dew
(end) devices, most smartphones have ARM CPUs, whereas
many cloud servers have Intel CPUs. In addition, iPhones
provide Apple Silicon GPU through Metal API, whereas the
major toolkit for NVIDIA GPU is CUDA. It is unfeasible
for a developer to prepare programs for each of such diverse
environments; thus, the platform should support this portability
issue. Finally, applications should maintain their execution
context over multiple invocations. For example, a video stream
processing application may refer to the processing result of
the last frame, so the result must be shared between nodes.
Nevertheless, there are two locality issues for sharing context:
i) The context data have temporal locality; for example,
processing results from the last frame become invalid after
the current processing; ii) The high-privacy scenario generates
spatial locality, which means the context data should only
be stored within a trusted domain. Thus, the platform must
maintain context data considering these locality constraints.

In this paper, we introduce Laqista: Locality and QoS-
aware Intelligence for Smart Things Application, a novel
serverless computing platform for deep learning applications.
Laqista adopts the Cloud-Fog-Dew architecture to support
diverse scenarios. Neither the application (and its developer)
nor the client need to care about physical resources, their
state, or where the application runs. Thus, Laqista allows
programming in a serverless manner, increasing the efficiency
and scalability of the platform.

To address the first challenge, Laqista provides the
scheduling interface called Edgeless API to clients. Beyond
serverless, the applications are transparently distributed across
Cloud-Fog-Dew, making the platform ”edgeless.” For this
distribution, the Scheduler selects an appropriate node and
model to meet QoS requirements, such as inference accuracy,
execution time, and privacy.

For the second challenge, applications run on a portable
and lightweight runtime, WebAssembly. Additionally, deep
learning inferences are conducted on ONNX. Both of these
runtimes are isolated from the outside environment, maintain-
ing the security and privacy of the executing host, especially
Dew devices.

The Context Store in Laqista provides an API for context
sharing across instances/nodes maintaining privacy. It also
functions under network disconnection on Dew devices; con-
text data is cached locally on the device and remains valid
during the specified lifetime.

The contributions of this paper are summarized as follows:
• We identified three technical challenges and requirements

to realize a Cloud-Fog-Dew computing platform for smart
applications.

• A novel Cloud-Fog-Dew computing platform named
Laqista is proposed. Laqista addresses real-world is-
sues by introducing Edgeless API, Context API, and pro-
gram execution methods via WebAssembly and ONNX.

• We designed interfaces for implementing a distributed
computing system with WebAssembly, whose specifica-
tions do not support networking features. In addition,
we showed that designs are feasible and effective by
developing a prototype implementation of Laqista.

II. RELATED WORKS

A. Partial Offloading of Deep Learning Models

MAUI [12] is a mobile-cloud computing architecture that
automatically offloads functions in smartphone applications
written in .NET to cloud servers. As .NET bytecode is
platform-independent, program portability is ensured. Imple-
menting deep learning models as combinations of functions
allows this offloading to benefit smart applications.

DNN offloading systems including Neurosurgeon [13] and
DIAMOND [14] offload model layers to the cloud (or edge)
to reduce latency, energy consumption, and throughput. In
Neurosurgeon’s paper, the authors compared the performance
with the MAUI, showing up to 39 times speedup.

Although these proposals offer various features, they are
not suitable for our goal owing to a lack of execution
environment isolation. The isolation mechanism is essential
because end-users private data must be protected on personal
Dew devices (smartphones, tablets, PCs, etc.). IoT devices
also need security; for instance, the Mirai botnet comprises
IoT and embedded devices. Furthermore, there is a risk of
unintentionally incorporating malicious code from dependency
libraries. In fact, PyTorch was compromised at the end of 2022
[15]. Malicious code was injected via the package registry,
making it difficult to discover for application developers and
end-users.

B. Inference Serving Systems

Inference Serving Systems such as Clipper [16] and INFaaS
[17] provide deep learning inference services on the Cloud.
The systems optimize inference accuracy, latency, or cost,
by introducing technologies including the intermediate layer
of request translation or the model-less system. Additionally,
AlpaServe [18] demonstrates efficient model parallelism in
inference serving.

While these systems operate on the cloud, Edge Intelligence,
which combines deep learning with Edge Computing, is gain-
ing attention. According to Wang et al. [3], our work falls
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under Edge Computing for deep learning as we aim to design
a platform to run deep learning applications.

However, existing research on Edge Computing for deep
learning does not address all technological challenges. Deep-
Decision [19], MAUI [12] and MASM [20] optimize energy
consumption, latency, and other metrics. However, the systems
focus on inference scheduling algorithms and do not address
distribution methods or application call interfaces. Therefore,
systems for context sharing and host environment diversity
need separate designs. Meanwhile, Zhang et al. [21] proposed
an open framework called OpenEI to address the challenges
of EI, namely, limited computing resources, data sharing and
collaboration, and mismatch between AI algorithms and edge
platforms. While libei of OpenEI defines how the clients
and applications interact, context sharing via libei is tied to
a specific node’s IP address, making it non-functional when
the application’s execution location is unknown beforehand.
In addition to context sharing and application call interface,
these works do not consider the isolation of applications.

C. Migration Techniques for Entire Applications

Gackstatter et al. designed a serverless system named
WOW that operates at the edge [22]. In WOW, the use of
WebAssembly addresses program portability and execution
isolation, enabling flexible migration between nodes. The
WebAssembly runtime is extremely lightweight compared to
Docker containers, improving cold start times by up to 99.5%.
However, WebAssembly is unsuitable for deep learning due to
the lack of GPU support and a memory limit of 4GB.

Gurgel et al. [23] designed a platform for deep learning
applications by extending an Osmotic Computing system,
Sapparchi [24]. Osmotic Computing allows context-sharing
through its Micro Data (MD) element, whereas OC uses
containers or lightweight VMs for application isolation which
leads to dependencies on specific OS or hardware. Addition-
ally, the system cannot address trade-offs between inference
accuracy and processing time. Thus, further extensions are
needed to meet the diverse QoS requirements of Smart Things
and Smart City clients.

III. DESIGN OF Laqista

In this section, we detail the design of the proposed system,
Laqista. The primary goal of Laqista is to build a Cloud-
Fog-Dew computing platform for deep learning applications
such as Smart Things, while satisfying the non-functional
requirements from the clients (QoS). To address technical
challenges, we designed the Edgeless API and Context API,
and the application programs are distributed in a portable and
lightweight format. The Edgeless API migrates applications
transparently within the Cloud-Fog-Dew layers, whereas the
Context API maintains context through migrations over spatial
and temporal locality. These designs allow clients, applica-
tions, and operators to utilize resources without knowledge of
the details of the platform, making the platform serverless and
”edgeless.”

Laqista

Dew Server

Application

Client Program Edge-less
API

Latency < 100 ms
Accuracy > 85 %
Privacy = Any

Context API

Dew Fog

Request Offload Offload

Invoke app

Cloud

QoS requirements

Fig. 2. Overview of the proposed method Laqista. Laqista consists of three
layers: Cloud, Fog, and Dew. The Scheduler, Context Store, and Executor
serve the Edgeless API, Context API, and application execution, respectively.
All of these exist on all three layers.

A. Cloud-Fog-Dew Layering

As shown in Figure 2, Laqista consists of three layers fol-
lowing the Cloud-Fog-Dew architecture [10]. All three layers
execute the Scheduler for request scheduling, the Executor for
serving application, and the Context Store for managing ap-
plication contexts. Thus, all layers have equivalent capabilities
of application execution. The differences lie in the amounts of
computing resources and locality, so requests are distributed
considering these two points.

The Cloud layer consists of multiple computers with abun-
dant computation, storage, and network capabilities. Although
termed ”Cloud” for convenience, public cloud services are
not necessary; on-premise servers or lab machines would also
function without operational differences. This layer has one
Authoritative Node (AN) and others are Non-Authoritative
Nodes (NANs). The AN runs the Scheduler and Context Store,
whereas the NANs run the Executor. The AN is also respon-
sible for managing applications deployed on the platform.

The Fog layer addresses the drawbacks of using Cloud
servers, namely, network latency and privacy concerns. Fog
nodes can be installed by any of the Laqista platform
operators, application developers, or end-users. Examples of
Fog nodes include Cloudlets [25], edge computers installed by
application providers, or home desktop computers. In any way,
Fog nodes exist along the network path (edge) from the client
to the cloud (Internet), offering lower latency and higher pri-
vacy than the Cloud, while providing more powerful resources
than the Dew (client). Fog nodes do not communicate with
each other and independently run a Scheduler, Context Store,
and Executor. Unlike the Cloud AN, which manages the entire
platform, Fog nodes provide more localized functionalities
to their connected clients, such as local cooperation for MR
or autonomous driving systems. Additionally, the clients can
ensure privacy by authenticating the Fog node with a public
key. For example, in Smart City applications, end-users or the
municipality can ensure that the node is in the trusted domain,
in other words, that the municipality manages it.

The Dew layer includes devices that generate raw data,
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such as end-users smartphones, desktop computers, VR head-
mounted displays, and Smart City sensors. The processing
capability strongly depends on the device’s specifications.
In particular, sensor devices may have minimal computing
capabilities, whereas desktop computers often have powerful
resources.

Dew devices run the client application program and the Dew
Server simultaneously. The client program generates data to
be processed, for example, by obtaining video frames from
a USB camera. To conduct deep learning inferences on this
data, the client process first asks for scheduling to the Dew
Server’s Edgeless API. Using the obtained target node from
scheduling, it invokes the application by sending the image
data. When invoking the application, the Dew Server routes
the request to the appropriate node or conducts disconnected
operations. In particular, it operates as a proxy between the
client and upper layer. It registers to one parent node on the
Fog or Cloud layer as a gateway for the offloading (Section
III-B).

B. Edgeless API

In brief, the Edgeless API allocates resources to process
upcoming requests. This allocation is transparently conducted
through Cloud, Fog, and Dew, so the client is unaware of
where the server is (serverless) or whether it is Edge Comput-
ing (”edgeless”).

To call an application, the client must allocate resources by
calling the Dew Server’s Edgeless API with non-functional
requirements, that is, acceptable processing time, required
inference accuracy, and privacy. The Scheduler first checks
if the node/device can meet the requirements on its own,
based on the past execution time. If it cannot, it forwards
the request to the upper layers, and the Fog node does the
same (Figure 2 depicts this offloading flow). The Cloud AN
eventually receives the request and it selects a NAN.

In addition to an execution location, the API is also re-
sponsible for selecting the appropriate model among multiple
variants. The application can have multiple models for a
single task (as discussed in Section III-C2), and the Scheduler
determines the appropriate one based on the required accuracy.

For privacy requirements, clients can specify a particular
trusted node using the node’s identifier or a public key. This is
useful for the application developer and end-user to process the
request on the Fog node that they manage. To target multiple
nodes while scheduling, the developer or end-user might install
the same key pair on the nodes.

To conclude, the Edgeless API returns a node that meets
privacy requirements and an RPC that meets accuracy require-
ments, while estimating the execution time of that combination
to respect latency constraints. The platform operator can
choose the concrete algorithm for resource estimation and
node selection based on needs.

Through the Edgeless API, Laqista abstracts resources on
the platform from the clients. The client specifies a require-
ment, and the rest is handled by the Scheduler, that is, resource

application app_1

rpc Main()
rpc Label()

service Example

rpc Yolov11()
rpc TinyYolov3()

service ObjectDetection

Executor app_2 app_3
Client Program

app_1.Example/Main

Call
Exec

ute
Call

Fig. 3. Containment relationship of application, service, and RPC. An
application contains Services of both (or one of) Logic and Model, and a
Service contains RPCs. The client invokes the Edgeless API in advance and
it calls the obtained RPC on the Executor of the target node. Because Logics
and Models are separated, the Logic function must perform an RPC to conduct
inference.

allocation and availability management. For availability man-
agement, if a Dew device faces network disconnection, the
Dew Scheduler will select the device itself as the target. There-
fore, the clients can utilize the resources transparently through
the non-functional requirements as an interface, addressing the
first technical challenge. From this perspective, the API makes
the platform serverless and ”edgeless.”

C. Applications

1) Program Format: WebAssembly [26] is an executable
binary format independent of hardware, OS, or browser
implementation. The isolation mechanism was designed for
running on the web, making it valuable in various fields such
as software plugin development. Moreover, the lightweight
instruction set enables its near-native speed [27].

As these features meet our requirements, applications on
Laqista are presented in WebAssembly. In addition, we
adopted ONNX [28] for distributing and executing deep learn-
ing models, because WebAssembly does not support deep
learning features. Therefore, Laqista applications function
by invoking ONNX inference via RPC from WebAssembly
programs.

Hereafter, we refer to the deep learning inference part
represented by ONNX as the ”Model” and the program part
represented by WebAssembly as the ”Logic.”

2) Service Units in Applications: An application encloses
the functions it provides in units called Services. Models
and Logics each have at least one Service, and each Service
contains at least one RPC. This containment relationship is
shown in Figure 3.

For Models, each task is considered as a Service, with
individual models treated as RPCs. For instance, an applica-
tion using an object detection model might have RPCs like
YOLOv11 and Tiny YOLO within the ObjectDetection
Service. By preparing multiple models for a single task,
applications can benefit from QoS scheduling via the Edgeless
API.

For Logic, a WebAssembly program corresponds to a Ser-
vice, with individual functions as RPCs. As described later,
programs are divided into functions at the points of RPC calls.
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Thus, a typical Logic might have an entry point RPC (e.g.,
Main) and a callback RPC after the model RPC call (e.g.,
Labeling).

3) Instantiation and Execution: Three events on the plat-
form trigger instantiation of an application. The first event is
when the application is deployed by the developer. The Cloud
AN (Scheduler) provides an endpoint for deployment, which
then initiates installation on a Cloud NAN. Another event is
when a client requests the application on the Fog node or Dew
device for the first time. Alternatively, a client can ask a node
for instantiation in advance to avoid cold starts.

The Executor on each node manages the instantiated ap-
plications and serves incoming requests to them. It performs
Ahead-of-Time compilation into executable native binary on
the deployment, so that the application can start up instantly.

4) Communication Interface for the Outside World: Logics
need to ask the host Executor for interaction with the outside
world, that is, returning values to the client and invoking
other RPCs. This is because the WebAssembly standard does
not specify communication interfaces including networking. In
addition, a function cannot directly return complex data types
(structs) to the host. These restrictions are critical for Laqista,
where applications are divided into Logics and Models and
they intercommunicate via RPCs.

To address this restriction, data are transferred from the host
to the function through the linear memory of WebAssembly.
When a Logic is being invoked, the host (Executor) serializes
the request payload into Protocol Buffers structs and writes
it to the linear memory (which is zero-filled initially). After
that, it calls the target function (Logic) passing the pointer to
written data as an argument. As pointers can be expressed as
a tuple of integer values (the address and data length), we can
transfer it safely.

Similarly, the application must return InvokeResult
using the same mechanism after it completes processing.
InvokeResult is an enumeration type with three vari-
ants, Finished, Error, and HostCall. Finished and
Error indicate successful completion and failure of the
execution, respectively. HostCall means the Logic wants to
call another Service on the platform. Additionally, the Context
API is invoked through this interface as well.

As shown in Figure 4, the host invokes the specified Service
when HostCall is returned. Before calling the Service,
scheduling is conducted by the Edgeless API just like normal
calls from clients. Thus, the target RPC might run on another
node, enabling granular resource utilization.

The calling application must specify a continuation as a
field. That is a callback function (i.e., an RPC) in the Logic
that should be executed after a response has been obtained
from the target Service. For example, applications may want
to map a label to the inference result as the continuation post-
process.

D. Context API

Applications can maintain their context over RPC invoca-
tions using the Context API provided by the Context Store. In

fn main(req: ImageData) -> (i32, i32) {
    let input = to_vector_data(req);
    let (addr, len) = write_linear_memory(input);
    let hostcall = InvokeResult::HostCall {

service: “app_1.ObjectDetection”,
input_ptr: (addr, len),
continuation: “callback”,

    };
    return write_linear_memory(hostcall);
}

fn callback(req: DetectionResult) -> (i32, i32) {
    /* some post-processing like labeling... */
}

WebAssembly program (pseudo code)

Executor

Deep learning model

Call function

①

Execute inference

②

Invoke callback
③

Fig. 4. Execution flow when HostCall is returned. The caller (a Logic)
writes two data to the linear memory, the enum and the request body for
the called Service (a Model). The host (an Executor) invokes the specified
Service, and then calls back the caller’s function.

the Cloud layer, the AN manages it, whereas in the Fog and
Dew layers, each node reads and writes values on the local file
system or memory. Alternatively, in the Cloud layer, external
implementations like Redis may be used for scalability or other
requirements.

The context can be accessed like a key-value store, with ar-
bitrary keys chosen by the application, such as frame numbers
or timestamps for video processing. Context data is divided by
two scopes: Node and App. Node scope identifies where the
data was written, and App scope indicates the application that
initiated the write, allowing unique namespaces for different
applications.

When new values are written, the Context Stores in each
layer synchronize that data immediately. If the initial write
destination was not the Cloud AN (the application was running
on Fog or Dew), the node first transfers the data to the Cloud.
Then, the AN propagates it from top to down, going through
Fog and Dew. This propagation only applies to the nodes
running the application that initiated the write operation.

Two non-functional requirements, Privacy and Invalidate,
can be specified for the values being written. Privacy limits
the node to propagate the value, in a similar manner to
Edgeless API. In addition to the latter function, the data
can be encrypted by the key for storing on untrusted nodes
(typically, the Cloud AN). The other one Invalidate specifies
the expiration time of the value. Data with this specification
becomes invalid after the specified period. Based on this, a
disconnected Dew device can determine whether the data is
explicitly invalid to avoid entering an erroneous state.

IV. EVALUATION

A. Experimental setup

We developed a prototype implementation of Laqista1. As
a PoC, we implemented the Scheduler and Executor for Cloud,
Fog, and Dew in Laqista. We selected Rust for development,

1https://github.com/kino-ma/Laqista
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TABLE I
MACHINES USED DURING THE EXPERIMENT AND THEIR SPECIFICATIONS

Device
Name

CPU GPU Memory OS

Server Intel i9-
10940X

NVIDIA
RTX
A5000

128 GB Ubuntu
20.04

Desktop Intel Xeon
E5-1620

Radeon R9
270X × 2

32 GB NixOS
24.05

Laptop Apple M3
Max

Apple M3
Max

128 GB macOS
14.1

Client VM AMD
EPYC
7702P (16
vCPUs)

N/A 16 GB NixOS
24.05

TABLE II
ELAPSED TIME TO START WEBASSEMBLY PROGRAMS

Measurement Target Mean Med. Std. Dev

Compile 66.357 ms 66.610 ms 4.1531 ms

Instantiate 558.69 µs 556.63 µs 8.7580 µs

Compile and Instantiate 74.735 ms 75.509 ms 3.9061 ms

gRPC for communication protocol, Wasmer for WebAssembly,
and WONNX for ONNX runtime2.

For the experiment, we implemented a sample image pro-
cessing application. The Logic first resized the input images
to 224×224 and then invoked the image classification Model,
SqueezeNet [29]. The Logic also extracted the most proba-
ble label from the output. The sample application was also
implemented with Rust and compiled into WebAssembly.

We used three physical machines and a client VM for the
experiment, as presented in Table I.

B. Latency

We measured the time required by Laqista to process a
single request. All measurements were conducted on the Lap-
top machine. As a measurement tool, we used Criterion.rs3.

1) Application Instantiation: In Laqista, applications are
transformed into WebAssembly, possibly causing performance
degradation. First, we determined the instantiation time of ap-
plications by measuring the AoT compilation, the instantiation
of that pre-compiled binary, and the end-to-end startup time
conducting those two. The measurement results are listed in
Table II.

Based on the result, the application could start up in
approximately 500 µs. The compilation to intermediate code
is required only once, at deployment time, so it does not affect
runtime performance. Additionally, the compilation time is
shorter than the instantiation of Linux containers up to 100
times on V8 [30], making WebAssembly a good choice for
isolation technology in distributed computing systems.

2Wasmer: https://wasmer.io/, wonnx: https://github.com/webonnx/wonnx
3https://bheisler.github.io/criterion.rs/book/index.html

infer native direct e2e
0

2

4

6

8

10

12

14

Re
sp

on
se

 ti
m

e 
(m

s)

8.54478
10.5457

13.2374 13.7942

Fig. 5. Comparison of processing time among only inference using ONNX
model (infer), invocation with native binary (native), with WebAssembly
(direct), and via Edgeless API and with WebAssembly (e2e, this is the normal
invocation on Laqista).

2) Runtime Latency Overhead: The main two possible
causes of runtime latency overhead are execution speed degra-
dation brought by WebAssembly runtime and invocation of
Edgeless API. To identify those effects, we ran tests on four
scenarios: i) application without Logic (only inference by
the Model, for comparison), ii) application compiled directly
to the native code, without invocation of Edgeless API, iii)
application compiled to WebAssembly, without invocation of
Edgeless API, iv) application compiled to WebAssembly, via
invocation of Edgeless API. The results are shown in Figure
5.

As expected, a performance degradation between native
code and WebAssembly code of approximately 25%, or 2–
3 ms, can be observed. Even though WebAssembly is said
to achieve ”near-native speed,” it still has a small runtime
overhead. In addition, the Edgeless API has an extra overhead
of approximately 500 µs, caused by reconnection to the
Scheduler, scheduling, and reconnection to the target node.
Furthermore, the native application bypasses the HostCall in-
terface and the continuation system, reducing the reconnection
and de-/serialization of payload and response.

However, these overheads caused by Laqista are accept-
able in real-world applications. First, runtime performance
should continue to improve over time as Jangda et al. [31]
showed, comparing the benchmark results in 2017 and 2019.
Second, the overheads will be added with each increase in
processing within WebAssembly; thus, they will have less
effect on smart applications, which are likely to have the
dominant processing in deep learning models. Additionally,
in practical scenarios in image processing, this overhead falls
within a practical range. For example, the client requires a
response time of approximately 1000÷24 ≃ 40 ms to process
24 fps video streams. We obtained the result of 13.8 ms and
the ratio was 13.8 ÷ 40 = 0.345 ≃ 35%; hence, real-time
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Fig. 6. Throughput measured on each machine. Three bars on the left side
(server, desktop, laptop) show the throughput on a single node setup. The red
bar with label cloud represents the result on the cloud cluster composed of
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single-node results and means the theoretical throughput. The broken brown
bar at the right shows the throughput for the Edgeless API called standalone
without actual calls to the application. The dashed cyan line shows the virtual
cap calculated from the network bandwidth.

performance was achieved. Furthermore, the overhead value
of 3.2 ms compared to native binary services corresponds
to only 3.2 ÷ 40 = 0.08 = 8%. From these observations,
the overhead introduced by Laqista is not problematic in
practical scenarios.

C. Throughput

Next, we measured the application delivery throughput on
Laqista using Grafana k64. Unless otherwise noted, the k6
clients were run at Client VM, and the targets were the Cloud
cluster composed of all of or one of three machines: Server,
Desktop, and Laptop. We ran four experiments: i) single node
for each machine, ii) a Cloud cluster from the three machines,
and iii) standalone Edgeless API on the Laptop machine. The
results are shown in Figure 6.

First, we obtained a single-node performance of 240.78
requests per second (req/s) on the Laptop machine. Because
we saw a latency of up to 14 ms on the same machine, it
should serve at least 1000 ÷ 14 ≃ 71.4 req/s in series. The
actual value was 240.78 req/s, meaning it serves approximately
240.78 ÷ 71.4 ≃ 3.4 requests in parallel. Therefore, the
Executor is efficiently utilizing the node’s resources.

When constructing a Cloud cluster, Laqista provides suf-
ficient throughput for smart applications. Summing up the
throughput of the three machines, they should theoretically
serve a maximum of 461.67 + 135.3 + 240.78 = 837.75
req/s. We observed 484.30 req/s, equivalent to serving 20
clients sending 24 fps video streams in parallel. The difference
with the theoretical value was caused by a bottleneck in the
network. According to the k6 report, the experiment consumed

4https://k6.io/

888 Mbps bandwidth. The Client VM and each machine were
interconnected via a 1 Gbps link with an actual measured
bandwidth of 906 Mbps reported by the iperf2 utility.
Therefore, Laqista demonstrated a throughput exceeding
the network bandwidth in an image processing application.
Practical client devices (e.g., smartphones, sensors) are very
likely to connect to 1 Gbps or lower links at present, so
Laqista is unlikely to become a bottleneck.

Furthermore, the Edgeless API showed a throughput of
7295.81 req/s, which is far higher than the application delivery
performance (7295.81÷484.30 ≃ 14.9 times). Thus, invoking
the Edgeless API does not create a bottleneck for application
execution.

V. DISCUSSIONS

A. Client Development

The only requirement for programs to act as Laqista
clients is the capability to call the Edgeless API and send re-
quests to target nodes based on scheduling results. Specifically,
both are calls to gRPC services. Therefore, a program is ready
to utilize the platform simply by importing a gRPC library.
As gRPC is a widely-known open framework with libraries
for various programming languages, Laqista is available for
many existing programs with minimal modifications.

Another necessary preparation is to launch the Dew Server.
This is a simple procedure, requiring only downloading and
executing the executable binary (or source code) of the
Laqista runtime. The client program may do this automati-
cally, and thus, the end user will be unaware of using Laqista.

B. Performance Improvements

To further enhance Laqista’s processing performance, sev-
eral additional mechanisms can be considered.

First, the Adaptive DNN model offloading techniques intro-
duced in Section II-A can be implemented as an application
on Laqista rather than a counterpart of Laqista. The main
functionality of the platform is resource abstraction, but not
performance improvement of applications. Applications can
exceed its original performance by implementing offloading
algorithms such as Neurosurgeon within it.

Additionally, a pre-emption mechanism would be effective.
In our prototype, GPU task scheduling depends on the pre-
installed schedulers. By switching a lower-priority processing
with a higher-priority one, more requests could be satisfied
with the QoS. The platform’s performance can be further
improved by replacing the schedulers with optimized ones for
running multiple models with varying priorities.

VI. CONCLUSION

In this research, we proposed a novel Cloud-Fog-Dew
computing platform Laqista for serving deep learning ap-
plications including Smart Things, Smart Cities, autonomous
driving, and MR. The requests are served on heterogeneous
devices/servers, scheduled by the Edgeless API for transpar-
ently satisfying the non-functional requirements. The clients
and applications are unaware of where the request is served
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(serverless) and whether this is performed at the Edge (”edge-
less”). The Context Store maintains the applications’ context
data over such elastic execution, considering the temporal and
spatial localities of the data. Furthermore, we designed an
interface for data exchange and communication between We-
bAssembly programs and the host or RPC, which enables the
execution of WebAssembly programs on distributed computing
systems.

We developed a prototype implementation of Laqista
and conducted quantitative performance evaluations. On an
image processing application, Laqista brought a latency
overhead of only 3 ms, and the end-to-end latency was
approximately 13 ms, sufficiently efficient for real-time video
stream processing. Application developers can further improve
the performance by implementing DNN offloading techniques
on the application layer. At the same time, Laqista served
484 req/s with three nodes, which is sufficient to serve 20
clients sending 24 fps video streams. This throughput hit the
network capacity of the 1 Gbps link; thus, Laqista would
not be a bottleneck in practice. Therefore, Laqista serves
smart applications efficiently, enabling various applications
with complex requirements such as real-time performance,
privacy, and high-accuracy inference.
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