)

Check for
Updates

GoldFish: Serverless Actors with Short-Term Memory State for

the Edge-Cloud Continuum

Cynthia Marcelino
TU Wien
Vienna, Austria
c.marcelino@dsg.tuwien.ac.at

Abstract

Serverless Computing is a computing paradigm that provides ef-
ficient infrastructure management and elastic scalability. Server-
less functions scale up or down based on demand, which means
that functions are not directly addressable and rely on platform-
managed invocation. Serverless stateless nature requires functions
to leverage external services, such as object storage and KVS, to
exchange data. Serverless actors have emerged as a solution to
these issues. However, the state-of-the-art serverless lifecycle and
event-trigger invocation force actors to leverage remote services
to manage their state and exchange data which impacts the perfor-
mance, incurs additional cost and dependency on third-part services.
To address these issues, in this paper, we introduce a novel server-
less lifecycle model that allows short-term stateful actors, enabling
actors to maintain their state between executions. Additionally, we
propose a novel serverless Invocation Model that enables serverless
actors to influence the processing of future messages. We present
GoldFish, a lightweight WebAssembly short-term stateful serverless
actor platform which provides a novel serverless actor lifecycle and
invocation model. GoldFish leverages WebAssembly to provide the
actors with lightweight sandbox isolation, making them suitable
for the Edge-Cloud Continuum, where computational resources
are limited. Experimental results show that GoldFish optimizes the
data exchange latency by up to 92% and increases the throughput
by up to 10x compared to OpenFaaS and Spin.

CCS Concepts

« Software and its engineering — Cloud computing; Message
passing; Middleware.

Keywords

Serverless computing, WebAssembly, Wasm, FaaS, Actor model,
Serverless actor, Data-intensive workflows, Edge-Cloud

ACM Reference Format:

Cynthia Marcelino, Jack Shahhoud, and Stefan Nastic. 2024. GoldFish: Server-
less Actors with Short-Term Memory State for the Edge-Cloud Continuum.
In 14th International Conference on the Internet of Things (IoT 2024), No-
vember 19-22, 2024, Oulu, Finland. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3703790.3703797

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IoT 2024, November 19-22, 2024, Oulu, Finland

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1285-2/24/11

https://doi.org/10.1145/3703790.3703797

Jack Shahhoud
TU Wien
Vienna, Austria
€1631081@student.tuwien.ac.at

56

Stefan Nastic
TU Wien
Vienna, Austria
snastic@dsg.tuwien.ac.at

1 Introduction

Serverless Computing is a paradigm that offers automated infras-
tructure management, scale to zero, and elastic scaling. Typically, a
Serverless application consists of a series of interconnected func-
tions, also known as a Serverless Workflow, that exchange ephemeral
data, which can be discarded after function processing. Due to the
Serverless stateless design, functions in a workflow leverage exter-
nal services such as object storage, message brokers, and Key-Value
stores (KVS) to exchange ephemeral data and manage their state.
Although external services provide benefits such as computing and
IO separation, they add significant latency overhead [18, 21, 27, 30].
Moreover, functions are not directly accessible; they are acces-
sible via platform ingresses such as API Gateway and Load Bal-
ancer [5, 15, 40], thus making direct communication more challeng-
ing. Serverless actors [1, 4, 6, 8, 16, 25, 33] have emerged addressing
these issues, thus enabling direct communication, state persistence,
and concurrency management, which is crucial for Serverless func-
tions.

Actors [2, 14] are isolated entities that can (D) create other actors,
) directly communicate with other actors and (3) influence the
processing or state for the next received message [6, 8, 14, 29, 35].
Serverless functions are (D) stateless, 2) non-addressable, and (3)
event-triggered [5, 15, 27, 40].

Existing Serverless actor approaches [1, 6, 16, 25, 33] leverage
the state-of-the-art Serverless design characteristics such as lifecy-
cle [26] and event-trigger invocation [18, 20, 40] to enable stateful
and addressable actors. However, in the current Serverless function
lifecycle [26], Serverless functions are stateless. Therefore, existing
actor-like Serverless approaches leverage remote services, incurring
network overhead and costs with additional services.

Existing approaches that enable persistent stateful functions in-
clude: (a) Programming Models [6-8, 32] that abstract the function
state handling from the developer and leverage external services
to store it. Such Programming Models provide frameworks and li-
braries that automatically manage state persistence. While Program-
ming Models simplify state management, they might introduce la-
tency overhead as they rely on external services. (b) Sidecars [1, 17]
systems that act as proxies and manage state interactions transpar-
ently, thus ensuring that state consistency and storage are handled
outside the serverless function lifecycle, thereby reducing the func-
tion’s overhead. Despite their benefits, sidecars run alongside the
function, consuming additional CPU and memory resources, which
impacts the overall resource usage and might become a challenge
at Edge-Cloud Continuum. (c) Custom Sandboxes [9, 33] ensure that
functions can access and modify shared states in a controlled man-
ner, providing isolation and, at the same time, enabling efficient

https://orcid.org/0000-0003-1707-3014
https://orcid.org/0009-0003-5857-2589
https://orcid.org/0000-0003-0410-6315
https://doi.org/10.1145/3703790.3703797
https://doi.org/10.1145/3703790.3703797
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3703790.3703797&domain=pdf&date_stamp=2025-03-31

loT 2024, November 19-22, 2024, Oulu, Finland

state management. Although custom sandboxes might be light-
weight, they are not interoperable with the current state-of-the-art
platforms, limiting their usage on different serverless platforms
such as Knative, OpenFaas, and OpenWhisk. Although these ap-
proaches offer state preservation, allowing Serverless functions
to execute as actors, they still rely on external services for state
management, causing up to 95% of the function latency [3, 19]. To
fully utilize actor potential, the Serverless lifecycle must ensure
actors can process multiple requests while preserving their state
for a short period. Consequently, actors maintain states between
executions, avoiding unnecessary state propagation of ephemeral
data for interconnected events.

Existing Serverless actors enable direct communication and per-
sistent statefulness by leveraging the existing Serverless lifecycle
and event-triggered invocation. As a result, a series of intercon-
nected events lead to multiple actor instances that still rely on
external services to exchange ephemeral data and store their state,
impacting the performance significantly. To address these issues,
in this paper, we propose novel Serverless lifecycle and invocation
models that enable actors to process multiple interconnected re-
quests and facilitate serverless actors to influence the processing
of future messages. Finally, we present GoldFish, a lightweight
actor-based Serverless platform that executes serverless functions
as actors. The main contributions of this paper include:

o LCM: A novel Serverless Lifecycle Model that natively executes
serverless functions as actors. It allows serverless actors to
preserve a short-term state between the executions, thereby
reducing multiple actor instantiating for multiple requests.

o SIM: A novel Serverless Invocation Model that allows actors to
influence the processing of future messages, enabling them to
handle multiple messages. Busy actors can reject future mes-
sages or queue them for processing when available. Hence,
SIM facilitates the processing of a set of connected events,
such as in Serverless Workflows, and thus, it maintains the
context and continuity of event processing.

o GoldFish: A WebAssembly Serverless Actor Platform that lever-
ages Wasm to provide a lightweight isolation. GoldFish ar-
chitecture leverages the LCM model to enable serverless
functions to execute as actors. Furthermore, GoldFish intro-
duces its dedicated message middleware that enables direct
communication and leverages SIM to enable actors to in-
fluence the processing of future messages, thus processing
multiple messages.

This paper has eight sections. Section 2 presents the illustra-
tive scenario and research questions. Section 3 describes GoldFish
Serverless lifecycle and invocation model as well as architecture
overview. Section 4 describes the lifecycle management and the
event-triggered message invocation introduced by GoldFish and
their usage. Section 5 shows the prototype implementation de-
tails. Section 6 discusses the experiments and evaluation, Section 7
presents related work. Section 8 concludes with a final discussion
and future work.

2 Motivation
2.1 Illustrative Scenario

To better motivate our research, we present a use case for real-
time field monitoring and disease detection in smart agriculture.

57

Marcelino, Shahhoud and Nastic

Data Disease Data
Processing Detection Aggregation

i@?em

loT Device

Figure 1: Simplified Serverless Workflow for Disease Control
for Smart Agriculture

To achieve this, IoT devices are strategically positioned throughout
the fields to detect crop properties such as soil moisture, tempera-
ture, humidity, and sunlight. A Serverless workflow is employed to
identify and respond to these agricultural needs.

Our workflow utilizes four Serverless functions, partially exe-
cuted on the Edge close to the data source to reduce communication
latency and partially executed on the Cloud. Edge tasks are respon-
sible for processing large real-time data streams, sensor data, and
simple disease detection. On the other hand, tasks that require
more powerful computing resources, such as model training and
inference, are carried out in the Cloud. Our motivating scenario
is inspired by a Serverless Workflow for real-time environmental
monitoring [11].

In Fig. 1, in Ingest stage, real-time data captured by IoT devices
are transmitted to edge nodes via a streaming framework, where
serverless functions responsible for Data Processing are activated
to execute tasks such as filtering, labeling and join the sensor data
close to the source, thus reducing latency. Then Disease Detection
function processes part of the data, identifying specific patterns
such as temperature and soil moisture. Then, Disease Detection
functions send data to Data Aggregation functions, which combines
current and historical data to enhance accuracy and reliability of
the results. Finally, the processed data is transmitted to the cloud,
where more resource-intensive tasks are performed, such as Al
model inference to enhance disease analysis.

GoldFish decreases this workflow latency by enabling actors to
process connected message events within a single actor. By soft-
ening some Serverless properties, such as statelessness, actors can
keep a short-term state between executions, avoiding the need for
remote services to exchange data. Additionally, actors can influ-
ence the processing of the next message, choosing to keep it in
the queue for processing or reject it completely, allowing another
actor to process the message. Thus, GoldFish enhances performance
while maintaining the serverless nature of the function, as it still
scales down to zero when not in use. On the other hand, it avoids
the network overhead associated with external remote services
for state persistence and data exchange. This tradeoff enhances
performance without compromising the fundamental benefits of
Serverless Computing.

2.2 Research Challenges

We identify the following research challenges to enable Serverless
actors to maximize their performance in the Edge-Cloud Contin-
uum.

RC-1: How to enable short-term stateful Serverless actors in the
Edge-Cloud Continuum while preserving Serverless characteristics
such as scale-to-zero?

GoldFish: Serverless Actors with Short-Term Memory State for the Edge-Cloud Continuum

The current Serverless function lifecycle supports either suc-
ceeded or failed states, which leads to platforms creating multiple
function instances for handling multiple function executions. Cur-
rent approaches for Serverless actors preserve their state in remote
storage and load the previous state in the new instance. Virtually,
the new actor instance has the previous state, but physically, it is
a new process on the host. Due to the current Serverless lifecycle
design limitation, every request is a new actor, which requires ac-
tors to leverage external services to maintain their state [8, 16, 26].
Communication with external services causes the most function
latency and additional costs, significantly affecting the performance
and cost-efficiency of Serverless workflows. Relying on external
services for state management adds latency, complexity, potential
points of failure and costs due to frequent data retrieval [3, 19].
Short-term stateful actors allow for state preservation within the
actors themselves, eliminating the need for external services for
state persistence. This minimizes the number of created instances,
decreases latency and costs, and preserves resources at the edge.
Hence, actors can scale to zero in the absence of invocations while
still providing the advantages of stateful functions.

RC-2: How can we enable direct communication between actors
while allowing them to influence the processing of future messages?

Direct communication among serverless actors requires address-
ability. By enabling direct message exchanges between actors, they
avoid using external services to exchange data, thus reducing la-
tency and network overhead. Nevertheless, the state-of-the-art
event-triggered Serverless function invocation enables single mes-
sage delivery, which means the platform cannot decide which func-
tion executes the message. To enable actors to influence future
messages, the event-triggering middleware must (D) forward to
the actor for processing, (2) enable actors to keep the message in
the middleware until the actor becomes available again, or (3) for-
ward to another actor in case of rejection by the existing actor. By
enabling actors to influence the processing of the message, users
can decide to process connected message events in same actors,
thus decreasing latency and network traffic overhead, crucial for
enhancing performance in sensitive edge environments [3, 22, 27].

RC-3: How to provide lightweight isolation while enabling the full
potential of Serverless actors in the Edge-Cloud Continuum?

Isolation is critical to ensure that failures in one actor do not
impact others. WebAssembly (Wasm) provides a secure sandboxed
environment that reduces the overhead associated with traditional
container-based isolation methods. Wasm lightweight isolation
allows serverless actors to execute with reduced cold start, latency
and resource consumption, which is crucial for the Edge-Cloud
Continuum. Furthermore, actors can profit from the reduced cold
starts Wasm, decreasing the actors startup time [13, 22, 24].

3 GoldFish Serverless Models and Architecture
Overview

3.1 GoldFish Serverless Lifecycle Model

Golfish Serverless Lifecycle Model (LCM) provides an enhanced
Serverless lifecycle specifically tailored for serverless actors to pre-
serve their state between multiple executions while they are still
alive. LCM still maintains Serverless characteristics such as elastic
scaling and scale-to-zero while enabling actors short-term state

58

loT 2024, November 19-22, 2024, Oulu, Finland

GoldFish Actor

Handler

Wasm Host
Interface

i Channel

COMPLETED: 1
.

Release H H
Messaging ' '
' '

0 TERMINATION |

........... s
SUSPENDED |_,.
Waiting H H
Messages

RUNNING

1
i
Block H
'
'

Messaging

i

'

Release '

Messaging '

Figure 2: GoldFish Serverless Lifecycle Model

memory. Thus, LCM optimizes resource usage, reduces latency,
and improves performance and scalability across the dynamic envi-
ronments of the Edge-Cloud Continuum by ensuring that existing
actors are efficiently utilized and consequently minimizing the over-
head associated with creating new actors.

3.1.1 GoldFish Actor. Fig. 2 shows GoldFish Actor and LCM Server-
less Lifecycle. GoldFish actor is one entity composed of Channel,
Wasm Host Interface, and Handler.

Channel. It is identifiable by a unique ID and serves as a dedicated
communication channel for the actor. It enables actors to carry their
previous state to the next one. Proactive message blocking ensures
that each actor processes only one message at a time, preventing
data races and maintaining the integrity of the execution process.

Wasm Host Interface (WHI). 1t is a sidecar process that creates
the Wasm VM, allowing for secure, isolated execution of the Wasm
binary. It acts as a mediator between the Wasm binary and the
channel, forwarding the input and output from the binary to the
message channel. Upon receiving a message, WHI sends a signal to
the Middleware to temporarily block any new incoming messages,
ensuring actors process only a single message at a time.

Handler. It encapsulates the user-defined code compiled into a
Wasm binary file. Functions execute in a Wasm sandbox, which
means a controlled environment that limits access to the host sys-
tem, receiving inputs and producing outputs through the Wasm
Host Interface.

3.1.2 GoldFish Serverless Lifecycle Phases. Fig. 2 shows LCM actor
phases from the initialization to the termination. LCM phases are
designed to ensure actor isolation and enable the (short-term) state
management, key properties of actor model [8, 29, 35]. Each phase
is responsible for specific tasks described below.

CREATED. This initial phase prepares the actor for operation
and reserves the resources necessary. In addition, the actor receives
a unique ID, which is later used for actor communication.

SUSPENDED. In this phase, the actor is not currently processing
any tasks but is ready and waiting for new input or to terminate the
actor if it remains in this phase for a long time. The period the actor
remain in suspended phase is determine by the user. SUSPENDED
phase enables actors to keep the actor active but not running, it is
waiting for incoming events to become active. This phase is essential

loT 2024, November 19-22, 2024, Oulu, Finland

for managing the efficient allocation of resources, enabling GoldFish
to quickly respond to new messages without the overhead of the
initialization phase.

ERROR. In this phase, the actor has failed either during startup
or execution. To enable message reprocessing, the actor releases the
message and moves to TERMINATION as a self-destroy mechanism.

RUNNING. During this phase, GoldFish wakes up the actor from
the SUSPENDED phase and forwards the message to the actor. In
this phase, it is where the actual data processing or task execution
takes place. Additionally, in this phase, actors can create other
actors by sending an addressed message to GoldFish Middleware.

COMPLETED. Once the messaging process is completed, the
actor sends the results to the GoldFish middleware and signals its
availability for further tasks. Then the actor can transition back to
the SUSPENDED phase.

TERMINATION. The final phase of the lifecycle, where the ac-
tor stops receiving new messages, deregisters itself. In this phase,
GoldFish releases resources and updates the actor state to reflect
that the actor is no longer active.

3.2 GoldFish Serverless Invocation Model

The GoldFish Serverless Invocation Model (SIM) design ensures
actors only handle one message at a time, which means concurrent
requests is only possible with multiple actors, thereby avoiding
concurrency issues and maintaining state integrity during the mes-
sage delivery. Specifically, it enables processing multiple messages
within a single actor message rather than handling each in isolation.
Hence, SIM supports a set of connected events, facilitating more
efficient workflow execution. Moreover, SIM enables serverless ac-
tors to influence future messages by keeping the message waiting
to be executed, thus avoiding the use of remote services to store
state and exchange data. As a result, it optimizes resource usage and
reduces latency, which is crucial for improving the performance of
functions in the Edge-Cloud Continuum.

Fig. 3 shows how SIM introduces a new way of triggering server-
less actors in response to events such as incoming messages. The
GoldFish SIM model ensures that new actors are created only when
necessary while existing actors are reused by introducing a in-
vocation Middleware with three queues: waiting, ready and done.
GoldFish SIM model enables GoldFish Buffer to identify the avail-
ability and state of actors via the actor lifecycle phase. If the actor
is SUSPENDED, it transitions to the RUNNING phase to handle the

Incoming Message waiting
a2 S
2
=
]
2
o
o
&— °
a0

Outgoing Message GoldFish Buffer

Figure 3: GoldFish Serverless Invocation Model

59

Marcelino, Shahhoud and Nastic

message. If the actor is busy, the Buffer keeps the message or for-
wards it to another available actor, ensuring seamless processing
without message loss. Thus, SIM invocation model enables Server-
less actors to process connected messages such as in a Serverless
Workflow. To avoid a long waiting time, the Buffer has a time and
message size limit defined by the user; once the time has reached,
a new actor instance is created instead of reusing an existing actor.

3.3 GoldFish Architecture Overview

GoldFish leverages actor model properties such as addressability,
isolation, and state to enhance serverless function execution by
transforming them into Serverless actors [14, 29, 35]. Each server-
less actor in GoldFish is uniquely identifiable, allowing for direct,
addressable communication, thereby facilitating efficient data and
message exchanges across the actors in the Edge-Cloud Continuum.
The GoldFish architecture, shown in Fig. 4, leverages Wasm to
provide an isolated and secure sandbox for each actor. Moreover,
GoldFish’s LCM manages the lifecycle of serverless actors from
initialization to termination. GoldFish LCM enables Serverless ac-
tors to retain and efficiently manage their state, thus facilitating
complex functions that require persistent state across sessions.

3.3.1 GoldFish Components. GoldFish is composed of main com-
ponents: GoldFish Middleware, Registry, GoldFish Buffer and Actor
Dispatcher.

GoldFish Middleware. It accepts messages and ensures the mes-
sages are routed to the buffer in the correct node. When a GoldFish
Buffer initiates, it registers itself in the GoldFish Middleware in the
control plane. This registration enables the middleware proxy to
route messages accurately to the designated actor dispatcher node.

Registry. It maintains a reference to the middleware across differ-
ent nodes. When a middleware initiates, it registers itself within the
registry. This registration enables the middleware proxy to route
messages accurately to the designated actor dispatcher.

GoldFish Buffer. It is a queue for the busy actors, keeping waiting
messages, thus allowing actors to influence the sequence of mes-
sages. When GoldFish Middleware receives a message, it passes it
to the GoldFish Buffer if there is enough processing capacity. The
Buffer then checks if the actors can handle new messages and sends
them to the Actor Dispatcher. If the actors are unable to process

| Event source

e Control Plane)
\ 1
' GoldFish) '
H Middleware Registry Storage .
: !
VN J
' T '
L [,) |
H GoldFish h N :
! Buffer ' @ :
- : 5 |
' G '
| | $
Dispatcher '] '
: 4 Channel . Q !
' ’
NN Data Plane pRyppp——) ,:

Serverless Platform

Figure 4: GoldFish Architecture Overview

GoldFish: Serverless Actors with Short-Term Memory State for the Edge-Cloud Continuum

new messages, the message is rejected. When a message is rejected,
it is either kept waiting in the buffer or sent to another Actor Dis-
patcher until it is accepted. The message processing is defined by
the actor, who can choose to receive the next message or reject it.

Actor Dispatcher. It manages the actors and their phases. The
Actor Dispatcher receives the messaging events, identifies whether
the actor exists by its unique ID, and forwards the message. The Ac-
tor Dispatcher updates Actor references in storage that are available
via the control plane.

4 GoldFish Mechanisms

GoldFish leverages the LCM Serverless Lifecycle Model and SIM
Serverless Invocation Model to enable an actor native Serverless
platform. GoldFish platform relies on two key mechanisms: LCM
Serverless Lifecycle Phases Management and the GoldFish SIM
Serverless Event-triggered Message Invocation.

4.1 GoldFish LCM Lifecycle Phases
Management

To execute Serverless functions as actors, GoldFish leverages the
LCM to create and reuse actors. Fig. 5 shows each phase and which
services are necessary to enable the LCM.

In D, in Fig. 5, when the actor is CREATED, it subscribes to a
specified channel with its unique ID. Then, GoldFish Middleware
stores actor references for future usage. CREATED is the initial
phase where the platform executes tasks to prepare for the actor
run, such as physical resource reservation and deployments. In the
next phase in 2), the actor enters the SUSPENDED phase, waiting
for incoming messages for a period of time defined by the user.
This is necessary to avoid actors to run constantly. In (3), a mes-
sage is received, and the middleware retrieves information from
the storage to identify the actor and forwards the message to the
actor via the actor channel. Once the actor receives the message, it
sends an event to the GoldFish Middleware to block new incoming
messages. GoldFish middleware then updates the actor reference
to the storage, finalizing this actor is busy and cannot receive any
new message. In (@), the actor completes the message processing

o B

GoldFish

ACTOR Middleware Storage
subscribe

CREATED @ save
SUSPENDED @
____________ message | ;e-tri-e:/e- T
LU C)]

update
COMPLETED @ unblock update
ERROR @ unblock update
__________ unsubscribe | |”
TERMINATION @ | delete

Figure 5: GoldFish Serverless Lifecycle Management

60

loT 2024, November 19-22, 2024, Oulu, Finland

and sends a signal to GoldFish to unblock the actor. GoldFish Mid-
dleware updates the actor reference and removes the block. After
this phase, the actor returns to phase (2) to receive new messages.
After a period defined by the user, the actor moves to the final
phase TERMINATION in (6). Phase (5) represents an error state in
the actor, the actor has either failed to startup or during execution.
After entering the ERROR phase, the actor unblocks the message
in GoldFish Middleware which updates the actor reference in the
storage. In (6), the TERMINATION phase, the actor unsubscribes
to the channel. GoldFish Middleware deletes the specific channel
and removes the actor reference from the storage. In this phase, the
platform also releases reserved resources and removes any actor
reference.

4.2 GoldFish SIM Serverless Message Invocation

SIM is a novel Serverless Invocation Model that enables Serverless
actors to influence future messages. GoldFish Message Middleware
leverages the SIM model to trigger and exchange messages between
Serverless actors. GoldFish actors decide the processing of future
messages based on the actor input; the GoldFish middleware decides
whether to keep the message waiting in the buffer or forward it to
the next actor.

Fig. 6 shows how GoldFish Middleware distributes the message
from the event source to the user function code. In (D), an event
arrives at the Middleware with the unique address of the actor.
In (2) the Middleware fetches from the storage existing actors in-
formation such as address and lifecycle phase to find out if any
existing node contains such an actor already. In (3), the middleware
forwards the message to either an existing actor that is suspended,
an existing actor that signaled that they want to process it as the
next message, or to the first free buffer that can potentially create
a new actor to process such message. In (@ the buffer queries the
actor state to know whether it is immediately available if the actor
wants to process the message next or reject it. In (5 the buffer

Control Plane Data Plane

o

Q

Host <
m— <

Interface @
[T

kel

o

(0]

G‘) Actor
GoldFish . <
D ”| Middieware |€ Dispatcher i
©
® GoldFish ©
Buffer
A 4 »
[0]
Storage |« @ ‘E)
$

Figure 6: GoldFish Distributed Messaging Middleware Flow

loT 2024, November 19-22, 2024, Oulu, Finland

forwards the message to the Actor Dispatcher or keeps the mes-
sage in memory for future processing. To avoid multiple storage
queries, the buffer also forwards the actor information, which is
necessary for the decision-making in the Actor Dispatcher. In (©),
the Actor Dispatcher creates an actor with its channel or forwards
the message to an existing actor channel. This decision is made
during the actor lifecycle phase. In (7) the host interface receives
the message from the channel and creates the Wasm VM. In @3,
if the actor wants to create another actor, e.g., send a message to
another actor, the Wasm Host interface also communicates to the
middleware to send a specific message. In 63, the buffer forwards
the message to the middleware, which starts the process for the
new message receiving from in (D). In 8 the Host Interface starts
the Wasm VM with the user function code.

5 Prototype Implementation

GoldFish is published as an open-source framework part of the
Polaris SLO CLoud. Polaris itself is part of the Linux Foundation
Centaurus project. GoldFish source code is available on GitHub!.

The actor in GoldFish comprises a message channel, a Wasm host
interface, and a Wasm binary containing the user function code.
We utilize WasmEdge[38] as the runtime, along with WasmEdge
libraries, to create the Wasm VM. To ensure scalability, we use
Docker[10] to run GoldFish actors, and the Rust wasmedge-sdk[39]
facilitates interaction with WasmEdge. Events are sent to the middle-
ware using WasmEdge Host Functions, which enable WebAssembly
to call native Rust functions by passing them as imports to Wasm
modules. The middleware is responsible for receiving and forward-
ing events to dispatchers, registering itself in the middleware reg-
istry upon startup. It communicates with Redis[31] to verify actor
information such as phase and address and is implemented using
GRPC interfaces. The middleware registry collects references to
active middleware via GRPC and stores these references in Redis.
Actor dispatchers respond to events received by the middleware,
creating an OCI Bundle with Docker that encapsulates the actor,
ensuring interoperability with state-of-the-art platforms. Imple-
mented in Rust, the dispatchers use Rust libraries to create GRPC
interfaces that are available to the bus.

6 Evaluation

We design our experiments to evaluate our GoldFish based on
our illustrative scenario, shown in Section 2.1, and on the most
common invocation patterns of Serverless Computing: Sequential
Executions and Fan-out execution, as discussed in [18]. The goal of
the evaluation is to measure the performance of the contributions
LCM, SIM and Goldfish platform presented in Section 1.

Baselines & Experimental Workflows. We compare GoldFish to
OpenFaas[28] and Spin[37]. We have chosen Openfaas to compare
GoldFish with a standard container Serverless Platform that has
wide support in the open-source community. As GoldFish, Spin
leverages WebAssembly, and therefore, it is important for GoldFish
to compare with a framework that leverages similar technologies.
We execute Chained Functions and Serverless Workflow, based on our
illustrative scenario in Section 2.1, for all three baselines (OpenFaaS,

Ihttps://github.com/polaris-slo-cloud/goldfish

61

Marcelino, Shahhoud and Nastic

Spin and GoldFish) with three functions to simulate real-wold data-
intensive Serverless use cases. In Chained Functions, we show the
use case when a serverless functionA calls a serverless functionB.
In Serverless Workflow, the next function is only executed once the
previous function has finished.

Metrics. Latency shows the execution time for the message pass-
ing between two actors. We use seconds and milliseconds for our
latency experiments for Sequential and Parallel execution, respec-
tively. Moreover, Throughput measures the number of executions
a framework can process in a specific timeframe. We measure the
performance of GoldFish under high load. The goal of Throughput
experiments is to identify how many requests can the function
process at a time and if there are bottlenecks in the proposed frame-
work once the function load increases.

6.1 Experiment Setup

To evaluate GoldFish, we execute the designed experiments on a
Ubuntu 22.04 LTS machine CPU ARMé64 (AARCH64) with 8 GB of
RAM, 4 cores, and 39 GB of storage. The experimental functions
and workflow are written in Rust for all the baselines. The baseline
functions used for the evaluation expose REST API endpoints for
receiving and processing requests from external sources. For the
HTTP requests, we use Rust libraries for sending multiple parallel
requests concurrently. To ensure the consistency of the results and
avoid bias, we executed the experiments seven times and calculated
the average as the desired result.

6.2 Experiment: Sequential Executions

In this experiment, we perform sequential request executions for
our two experimental workflows: Chained Functions and Serverless
Workflow.

. 18 GoldFish]
g 200 g Spin il I 7
8 &
[%‘-3 100 | [0 OpenFaas 1 L 4
0L — S e B0 B i B2 i
100 300 500 700

Number of messages

Figure 7: Message Exchange Latency

In Fig. 7, we show the latency of multiple sequential message
requests processed by GoldFish Middleware, and the baseline Spin
and OpenFaas. In the x axis, we display the number of messages
and, in y, the latency to process these messages. GoldFish Middle-
ware shows latencies from approximately 3.56 to 25.04 seconds,
while Spin displays an increase from about 28.06 to 196.25 seconds,
and OpenFaas shows latency growing from roughly 34.58 to 241.00
seconds. The results show that GoldFish reduces latency up to
89% when compared to the baseline. Fig. 8a shows the input data
size on the x axis and the latency in seconds on the y axis. Gold-
Fish displays response times ranging from 0.039 to 0.919 seconds,
OpenFaaS shows an increase from about 0.272 to 6.144 seconds, and
Spin’s response time grows from 0.218 to 4.362 seconds. The latency

https://github.com/polaris-slo-cloud/goldfish

GoldFish: Serverless Actors with Short-Term Memory State for the Edge-Cloud Continuum

—a— GoldFish
T T T 1

OpenFaaS
25

Spin

Seconds
O = N Wk oo
!
Request per second
[

[|
1 10 20 30 40
Input Size (MB)

1 10 20 30 40 50

Input Size (MB)
(a) Latency (b) Throughput

Figure 8: Sequential Execution: Chained Functions

—a— GoldFish OpenFaaS Spin
27— g 923
10 1 8
< 8 4239
= o}
g 6 n o
E 4 | 45 0.5
2 &
0 ‘%007 [I | [
1 10 20 30 40

1 10 20 30 40 50

Input Size (MB) Input Size (MB)

(a) Latency (b) Throughput

Figure 9: Sequential Execution: Serverless Workflow

analysis reveals that GoldFish decreases the latency by up to 85%
and 79% compared to OpenFaaS and Spin, respectively. These la-
tency experiments show a significant latency reduction of GoldFish,
with all three systems demonstrating a generally linear increase
in response times, indicative of stable performance across the in-
creasing load. Fig. 8b shows the throughput of GoldFish, OpenFaaS,
and Spin as increasing the input size. The x axis represents the
input data size, while the y axis shows requests per second. Over
axis x, GoldFish’s throughput decreases from about 25.93 to 1.09
requests per second, OpenFaaS declines from 3.68 to 0.16 requests
per second, and Spin drops from 4.60 to 0.23 requests per second.
All systems experience a linear decrease in throughput as the input
size increases, indicating a linear throughput decrease with the
input size. Additionally, GoldFish maintains a throughput up to 6.8
times higher than OpenFaaS and up to 4.7 times higher than Spin.

Fig. 9a presents the input data size in megabytes on the x axis
and the response latency on the y axis. As input size increases, Gold-
Fish shows latency improvements ranging from 40 milliseconds
to 1.71 seconds. OpenFaas displays latency from 363 milliseconds
to approximately 12.5 seconds, while Spin maintains an increase
from 299 milliseconds to 8.73 seconds. This experiment shows that
GoldFish reduces latency by up to 86% compared to OpenFaas and
80% relative to Spin.

Fig. 9b shows the throughput metrics, where the input data size is
in megabytes on the x axis and the requests per second on the y axis.
GoldFish displays a throughput decrease from 24.65 to 0.59 requests
per second, while OpenFaas and Spin show reductions from 2.75 to

62

loT 2024, November 19-22, 2024, Oulu, Finland

0.08 and from 3.34 to 0.11 requests per second, respectively. GoldFish
presents up to 7.4 times higher throughput than OpenFaas and up
to 5.4 times more than Spin.

6.3 Experiment: Fan-out Parallel Executions

In these experiments, we measure GoldFish scalability with fan-out
parallel request executions for Chained Functions and Serverless
Workflows.

Fig. 10a presents the latency from the parallel execution experi-
ments, where the x axis represents the number of parallel execu-
tions and the y axis reflects latency in milliseconds. Fig. 10a that
GoldFish maintains a relatively stable latency ranging from 6.9
milliseconds to around 5.75 milliseconds, even as the number of
parallel executions increases. In comparison, OpenFaas and Spin
exhibit slightly higher latency under higher loads, with OpenFaas
and Sping showing a latency of around 50 milliseconds. GoldFish
shows up to an 87% reduction in latency compared to OpenFaas
and Spin.

In Fig. 10b, GoldFish maintains higher throughput, ranging from
123.45 to about 173.91 requests per second, which aligns with its
efficient latency results under parallel operations in Fig. 10a. Open-
Faas and Spin also display consistent throughput, with OpenFaas
and Spin presenting around 50 requests per second even when the
function load increases in axis x. Overall, GoldFish has up to 9x
higher throughput when compared to OpenFaas and Spin.

Fig. 11a showcases the latency from parallel execution for Server-
less Workflows, where the x axis indicates the number of parallel
executions and the y axis measures the latency in milliseconds.

—a— GoldFish OpenFaaS Spin
o
[I I I T] =] 170
P 2120
g 7] 80 -
9 20 [-1 8
2 240
S5 . RS n % 17
5.5 | | I il é | | | | |
20 40 60 80 100

20 40 60 80 100

Parallel Executions Parallel Executions

(a) Latency (b) Throughput

Figure 10: Parallel Execution: Chained Functions

—m— GoldFish OpenFaaS

Spin

I I 1

=0
D=0
(Sl ew Sy

(SN
o

Milliseconds

—_
-3

Request per second

R N I B
20 40 60 80 100

Parallel Executions

\ \ \ \
20 40 60 80 100
Parallel Executions

(a) Latency (b) Throughput

Figure 11: Parallel Execution: Serverless Workflow

loT 2024, November 19-22, 2024, Oulu, Finland

GoldFish demonstrates stability in latency, which ranges from 6.4
ms to 4.23 ms as the parallel execution count increases. In contrast,
OpenFaas and Spin display higher latency similar to the nested
functions, in Fig. 10a, around 50ms. Compared to the baselines,
GoldFish’s latency is lower, showing an improvement of approxi-
mately 92% for serverless workflows.

In Fig. 11b, GoldFish maintains a high throughput ranging from
156.25 to 236.41 requests per second. Both OpenFaas and Spin also
show consistent throughput; however, they show around 20 re-
quests per second, significantly lower than GoldFish. These results
show that GoldFish has up to 10x higher throughput compared to
the baselines, showing stability for high-load serverless workflows
while maintaining high throughput and low latency.

7 Related Work

Serverless Actor Model. pActor [16] introduces a lightweight
stateful serverless platform able to execute actors not only on the
cloud but also at the edge with limited resources such as micro-
controllers. pActor enables actors to send and receive messages
from another actor via publish/subscribe mechanisms. Furthermore,
actors may have access to additional devices such as sensors, ac-
tuators, databases, and DSP chips. Nevertheless, the introduced
platform is not interoperable with the existing state-of-the-art plat-
forms such as Knative, OpenFaas, and OpenWhisk, while Goldfish
implements the actor a standard container which can be used by
most of open source and comercial Serverless platforms. Microsoft
Azure’s Durable Functions (DF) [6] introduces programming model
abstractions to enable function state handling while ensuring re-
liable task progression. DF combines task and actor parallelism
to create a fault-free function model. However, DF is specifically
designed for the Azure platform, limiting its usage across other
Serverless Platforms such as AWS Lambda, OpenFaaS, and Open-
Whisk. Akka [1] introduces a side-car container that intercepts
the incoming and outgoing traffic to manage the function state
via external storage and proxies the traffic to the user function
container. Nevertheless, Akka introduces an additional system that
runs on an additional container, leading to potential increased re-
source usage, thus limiting its usage in the Edge-Cloud Continuum,
where computational resources are limited. Ray [25] introduces
a fully managed serverless platform tailored for Al that natively
integrates the actor properties in the serverless functions, ensur-
ing fault recovery and at-least-once message delivery mechanism.
Ray preserves the state between the serverless Al workflow, wrap-
ping multiple functions into one actor, such as extract and process
frames, thus enabling low latency as functions are embedded in
one actor. Although these approaches enable Serverless actors, they
still rely on external services to persist the actor state even for
ephemeral and intermediate data, thus increasing latency, costs,
and digital waste. Goldfish keeps a short-term memory state in the
actor so that actors can leverage the state to exchange ephemeral
data exchange.

Stateful Serverless. Faasm [33] introduces a stateful Serverless
via faaslet and a two-tier state architecture for state and message
exchange via faabric [34]. Faaslet provides lightweight isolation for
each function, while the two-tier state architecture enables local
and global function state storage based on the function location.

63

Marcelino, Shahhoud and Nastic

Nevertheless, Faasm introduces customized isolation mechanisms
incompatible with the OCI specs [12] of the current state-of-the-art
serverless platforms. Cloudburst [36] proposes a stateful Serverless
platform that leverages Anna [41] Key-Value Store (KVS) for data
exchange. Cloudburst replicates part of the cache locally for each
function, allowing low-latency access, while remote data is accessed
via Anna KVS. Although Cloudburst offers low latency and a highly
scalable serverless platform, it might introduce duplicate cached
data, leading to network overhead and duplicate serialization, a
challenge for the limited resources of the Edge-Cloud Continuum.
Although the presented approaches enable stateful serverless, they
focus on a persistent state, leading to network overhead, depen-
dency on external systems, and additional costs. As Goldfish pro-
vides short-term state and multiple request executions, actors can
keep their state for a short period between executions, avoiding
the need for external service and thus improving performance sig-
nificantly.

8 Conclusion & Future Work

In this paper, we presented Goldfish, a short-term stateful Serverless
for the Edge-Cloud Continuum that provides a novel Serverless
Lifecycle Model (LCM) that allows actors keep a short-term state.
Goldfish provides also SIM, a novel Serverless Invocation Model
that enables actors to influence the processing of future messages,
thus enabling one actor to process multiple requests. GoldFish
leverages Wasm to provide a secure and isolated sandbox while
enabling efficient ephemeral-data communication among serverless
actors, thus optimizing performance and scalability in distributed
environments.

Our evaluation demonstrates that GoldFish decreases latency
and increases throughput, thereby enhancing performance in the
Edge-Cloud Continuum. Specifically, GoldFish reduces latency by
up to 92% and increases throughput by up to 10 times. GoldFish is
specifically designed to address the requirements of the Edge-Cloud
Continuum. Goldfish provides a lightweight Wasm sandbox, which
fits the limited resource environment of the Edge Cloud Continuum.

In the future, we plan to expand Goldfish into the 3D Edge
Cloud Space Continuum. To achieve this, we intend to integrate
Orbital Edge Computing (OEC) requirements, including satellite po-
sitioning, into the Goldfish platform requirements. This will enable
Goldfish to execute workflows within the 3D Continuum seam-
lessly. Moreover, we intend to expand GoldFish by implementing
a smart and serialization-free actor state. This enhancement will
allow the platform to identify if the actors necessitate a remote
state, thus preventing unnecessary state persistence. As a result,
resource usage will be optimized and latency reduced by skipping
the loading of actor states. Finally, we aim to integrate Goldfish
into ML pipelines in Edge-Cloud Continuum to facilitate statefull
data-intensive workloads such as [23].

Acknowledgments

This work is partially funded by the Austrian Research Promotion
Agency (FFG) under the project RapidREC (Project No. 903884). This
research received funding from the EU’s Horizon Europe Research
and Innovation Program under Grant Agreement No. 101070186.
EU website for TEADAL: https://teadal.eu.

https://teadal.eu

GoldFish: Serverless Actors with Short-Term Memory State for the Edge-Cloud Continuum

References
[1] [n.d.]. Akka Actor Systems. https://doc.akka.io/docs/akka/current/general/actor-

[2

[3

[10

(11

[15

[16

[18

[19

[20

==

]
]

systems.html

Gul Agha. 1986. Actors: a model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA, USA.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 923-935. https://www.
usenix.org/conference/atc18/presentation/akkus

Daniel Barcelona-Pons, Marc Sanchez-Artigas, Gerard Paris, Pierre Sutra, and
Pedro Garcia-Lopez. 2019. On the FaaS Track: Building Stateful Distributed Appli-
cations with Serverless Architectures. In Proceedings of the 20th International Mid-
dleware Conference (Davis, CA, USA) (Middleware ’19). Association for Computing
Machinery, New York, NY, USA, 41-54. https://doi.org/10.1145/3361525.3361535
Luciano Baresi and Danilo Filgueira Mendonca. 2019. Towards a Serverless
Platform for Edge Computing. In 2019 IEEE International Conference on Fog
Computing (ICFC). 1-10. https://doi.org/10.1109/ICFC.2019.00008

Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S. Meiklejohn. 2021. Durable functions: semantics
for stateful serverless. Proc. ACM Program. Lang. 5, OOPSLA, Article 133 (oct
2021), 27 pages. https://doi.org/10.1145/3485510

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and
Jorgen Thelin. 2011. Orleans: cloud computing for everyone. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (Cascais, Portugal) (SOCC ’11).
Association for Computing Machinery, New York, NY, USA, Article 16, 14 pages.
https://doi.org/10.1145/2038916.2038932

Roberto Casadei, Ferruccio Damiani, Gianluca Torta, and Mirko Viroli. 2024.
Actor-Based Designs for Distributed Self-organisation Programming. Springer
Nature Switzerland, Cham, 37-58. https://doi.org/10.1007/978-3-031-51060-1_2
Marcin Copik, Alexandru Calotoiu, Rodrigo Bruno, Gyorgy Rethy, Roman
Bohringer, and Torsten Hoefler. 2022. Process-as-a-Service: Elastic and State-
ful Serverless with Cloud Processes. Technical Report.

Docker. 2024. Docker: Accelerated, Containerized Application Development.
https://www.docker.com/ Accessed: 2024-06-30.

Muhammad Shoaib Farooq, Shamyla Riaz, Adnan Abid, Kamran Abid, and
Muhammad Azhar Naeem. 2019. A Survey on the Role of IoT in Agriculture
for the Implementation of Smart Farming. IEEE Access 7 (2019), 156237-156271.
https://doi.org/10.1109/ACCESS.2019.2949703

The Linux Foundation. 2024. Open Container Initiative Runtime Specification.
https://github.com/opencontainers/runtime- spec/blob/main/spec.md

Philipp Gackstatter, Pantelis Frangoudis, and Schahram Dustdar. 2022. Pushing
Serverless to the Edge with WebAssembly Runtimes. 140-149. https://doi.org/
10.1109/CCGrid54584.2022.00023

Philipp Haller. 2012. On the integration of the actor model in mainstream tech-
nologies: the scala perspective. In Proceedings of the 2nd Edition on Programming
Systems, Languages and Applications Based on Actors, Agents, and Decentralized
Control Abstractions (Tucson, Arizona, USA) (AGERE! 2012). Association for Com-
puting Machinery, New York, NY, USA, 1-6. https://doi.org/10.1145/2414639.
2414641

Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless com-
puting: One step forward, two steps back. arXiv preprint arXiv:1812.03651 (2018).

Raphael Hetzel, Teemu Kérkkainen, and Jérg Ott. 2021. p Actor: Stateful Server-
less at the Edge. In Proceedings of the 1st Workshop on Serverless Mobile Networking
for 6G Communications (Virtual, WI, USA) (MobileServerless’21). Association for
Computing Machinery, New York, NY, USA, 1-6. https://doi.org/10.1145/3469263.
3470828

Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with
Shared Logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP °21). Association for Comput-
ing Machinery, New York, NY, USA, 691-707. https://doi.org/10.1145/3477132.
3483541

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
arXiv:1902.03383 [cs.0S]

Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu. 2021.
Faastlane: Accelerating Function-as-a-Service Workflows. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 805-820.
https://www.usenix.org/conference/atc21/presentation/kotni

Samuel Kounev, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup, Ian Foster,
Prashant Shenoy, Omer Rana, and Andrew A. Chien. 2023. Serverless Computing:
What It Is, and What It Is Not? Commun. ACM 66, 9 (aug 2023), 80-92. https:
//doi.org/10.1145/3587249

64

[21

[22

[23

[24

[25

[28

[29

[30

[33

[34

[35

[36

[40

[41

]

]

D=

]

]

loT 2024, November 19-22, 2024, Oulu, Finland

Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In 2021 USENIX Annual Technical Conference (USENIX
ATC 21). USENIX Association, 285-301. https://www.usenix.org/conference/
atc21/presentation/mahgoub

Cynthia Marcelino and Stefan Nastic. 2024. CWASI: A WebAssembly Runtime
Shim for Inter-function Communication in the Serverless Edge-Cloud Contin-
uum. In Proceedings of the Eighth ACM/IEEE Symposium on Edge Computing
(Wilmington, DE, USA) (SEC °23). Association for Computing Machinery, New
York, NY, USA, 158-170. https://doi.org/10.1145/3583740.3626611

Maximilian Maresch and Stefan Nastic. 2024. VATE: Edge-Cloud System for
Object Detection in Real-Time Video Streams. In The 8th IEEE International
Conference On Fog and Edge Computing (ICFEC 2024).

Jéames Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2022. We-
bAssembly as a Common Layer for the Cloud-edge Continuum. In Proceedings of
the 2nd Workshop on Flexible Resource and Application Management on the Edge
(Minneapolis, MN, USA) (FRAME °22). Association for Computing Machinery,
New York, NY, USA, 3-8. https://doi.org/10.1145/3526059.3533618

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging Al Applications.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 561-577. https://www.usenix.
org/conference/osdi18/presentation/moritz

Chris Munns. 2019. Tracking the state of AWS Lambda functions. https:
//aws.amazon.com/blogs/compute/tracking- the- state- of-lambda- functions
Stefan Nastic, Philipp Raith, Alireza Furutanpey, Thomas Pusztai, and Schahram
Dustdar. 2022. A Serverless Computing Fabric for Edge & Cloud. In 2022 IEEE
4th International Conference on Cognitive Machine Intelligence (CogMI). 1-12.
https://doi.org/10.1109/CogMI56440.2022.00011

OpenFaaS. 2024. OpenFaaS$ - Serverless Functions Made Simple. https://www.
openfaas.com/ Accessed: 2024-06-30.

Daniel Barcelona Pons, Alvaro Ruiz Ollobarren, David Arroyo Pinto, and Pe-
dro Garcia Lopez. 2018. Studying the feasibility of serverless actors. In Proceed-
ings of the European Symposium on Serverless Computing and Applications, ES-
SCA@UCC 2018, Zurich, Switzerland, December 21, 2018, Vol. 2330. CEUR-WS.org,
25-29. https://ceur-ws.org/Vol-2330/short1.pdf

Philipp Raith, Stefan Nastic, and Schahram Dustdar. 2023. Serverless Edge
Computing—Where We Are and What Lies Ahead. IEEE Internet Computing 27,
3 (2023), 50-64. https://doi.org/10.1109/MIC.2023.3260939

Redis. 2024. Redis. https://redis.io/ Accessed: 2024-06-30.

Sanjin Sehic, Fei Li, Stefan Nastic, and Schahram Dustdar. 2012. A Programming
Model for Context-Aware Applications in Large-Scale Pervasive Systems. In
Proceedings of the IEEE 8th International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob 2012). IEEE Computer Society,
142-149. Vortrag: IEEE 8th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob 2012), Barcelona, Spain;
2012-10-08 - 2012-10-10.

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20). USENIX Association, 419-433. https://www.usenix.
org/conference/atc20/presentation/shillaker

Simon Shillaker, Carlos Segarra, Eleftheria Mappoura, Mayeul Fournial, Lluis Vi-
lanova, and Peter Pietzuch. 2023. Faabric: Fine-Grained Distribution of Scientific
Workloads in the Cloud. arXiv preprint arXiv:2302.11358 (2023).

Jonas Spenger, Paris Carbone, and Philipp Haller. 2024. A Survey of Actor-Like
Programming Models for Serverless Computing. Springer Nature Switzerland,
Cham, 123-146. https://doi.org/10.1007/978-3-031-51060-1_5

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Jose M. Faleiro, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov.
2020. Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow. 13 (2020),
2438-2452.

Fermyon Technologies. 2024. Spin - Fermyon Developer Documentation. https:
//developer.fermyon.com/spin/v2/index Accessed: 2024-06-30.

WasmEdge. 2024. WasmEdge. https://wasmedge.org/ Accessed: 2024-06-30.
WasmEdge. 2024. WasmEdge Rust SDK. https://github.com/WasmEdge/
wasmedge-rust-sdk Accessed: 2024-06-30.

Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. 2023. Rise of the Planet
of Serverless Computing: A Systematic Review. ACM Trans. Softw. Eng. Methodol.
32, 5, Article 131 (jul 2023), 61 pages. https://doi.org/10.1145/3579643
Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. 2018. Anna: A
KVS for Any Scale. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). 401-412. https://doi.org/10.1109/ICDE.2018.00044

https://doc.akka.io/docs/akka/current/general/actor-systems.html
https://doc.akka.io/docs/akka/current/general/actor-systems.html
https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1109/ICFC.2019.00008
https://doi.org/10.1145/3485510
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1007/978-3-031-51060-1_2
https://www.docker.com/
https://doi.org/10.1109/ACCESS.2019.2949703
https://github.com/opencontainers/runtime-spec/blob/main/spec.md
https://doi.org/10.1109/CCGrid54584.2022.00023
https://doi.org/10.1109/CCGrid54584.2022.00023
https://doi.org/10.1145/2414639.2414641
https://doi.org/10.1145/2414639.2414641
https://doi.org/10.1145/3469263.3470828
https://doi.org/10.1145/3469263.3470828
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://arxiv.org/abs/1902.03383
https://www.usenix.org/conference/atc21/presentation/kotni
https://doi.org/10.1145/3587249
https://doi.org/10.1145/3587249
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://doi.org/10.1145/3583740.3626611
https://doi.org/10.1145/3526059.3533618
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://aws.amazon.com/blogs/compute/tracking-the-state-of-lambda-functions
https://aws.amazon.com/blogs/compute/tracking-the-state-of-lambda-functions
https://doi.org/10.1109/CogMI56440.2022.00011
https://www.openfaas.com/
https://www.openfaas.com/
https://ceur-ws.org/Vol-2330/short1.pdf
https://doi.org/10.1109/MIC.2023.3260939
https://redis.io/
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.1007/978-3-031-51060-1_5
https://developer.fermyon.com/spin/v2/index
https://developer.fermyon.com/spin/v2/index
https://wasmedge.org/
https://github.com/WasmEdge/wasmedge-rust-sdk
https://github.com/WasmEdge/wasmedge-rust-sdk
https://doi.org/10.1145/3579643
https://doi.org/10.1109/ICDE.2018.00044

	Abstract
	1 Introduction
	2 Motivation
	2.1 Illustrative Scenario
	2.2 Research Challenges

	3 GoldFish Serverless Models and Architecture Overview
	3.1 GoldFish Serverless Lifecycle Model
	3.2 GoldFish Serverless Invocation Model
	3.3 GoldFish Architecture Overview

	4 GoldFish Mechanisms
	4.1 GoldFish LCM Lifecycle Phases Management
	4.2 GoldFish SIM Serverless Message Invocation

	5 Prototype Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Experiment: Sequential Executions
	6.3 Experiment: Fan-out Parallel Executions

	7 Related Work
	8 Conclusion & Future Work
	Acknowledgments
	References

