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Abstract—Function-as-a-Service (FaaS) is a serverless comput-
ing model that enables applications to be composed of self-
contained functions triggered by events. The edge-cloud con-
tinuum extends this paradigm by allowing function deployment
closer to users and IoT devices, reducing communication latency.
However, large-scale FaaS deployment at the edge demands
energy-efficient resource management to ensure cost reduction
and sustainability. To address this challenge, we present E>F'IS:
Energy-Efficient Function Invocation Scheduling, a framework
that optimizes resource management and minimizes energy
consumption in edge FaaS platforms. E?FIS formulates function
scheduling as a Mixed Integer Linear Programming (MILP)
problem, minimizing energy consumption by consolidating work-
loads while ensuring execution deadlines are met. Through simu-
lations with real-world traces and experiments on the Serverledge
Faa$S platform, E2F IS demonstrates to outperform the Earliest
Deadline First (EDF) baseline, reducing energy consumption up
to 92% while maintaining timely function execution.

Index Terms—Function-as-a-Service, Edge-Cloud Continuum,
Energy Efficiency, Scheduling.

I. INTRODUCTION

Function-as-a-Service (FaaS) [1] is a computing paradigm
that enables the deployment of applications composed of self-
contained functions triggered by events. FaaS platforms han-
dles the management and scaling of functions, abstracting the
complexities of the underlying infrastructure. This abstraction
makes FaaS a cost-efficient model in terms of resource usage
and optimization. By abstracting infrastructure management,
FaaS simplifies development and accelerates time-to-market.

Recently, cloud computing is shifting towards the edge-
cloud continuum [2], integrating edge environments to enable
real-time processing and low-latency applications. Edge de-
vices provide computing and storage resources near users and
IoT devices, creating a distributed infrastructure. In this model,
applications, or functions in FaaS, are deployed across the
edge-cloud continuum based on their latency requirements.

The growing demand for FaaS services and the large-
scale deployment of FaaS platforms across the edge-cloud
continuum place a strong emphasis on energy efficiency in re-
source management to reduce operational costs and minimize
environmental impact [3]. This requires balancing the Quality
of Service (QoS) compliance [4] with minimizing energy
consumption to ensure efficient and sustainable operations.

Existing research on FaaS platforms has primarily focused
on energy-aware scheduling for infrastructures with nodes
powered by renewable energy, with the aim of improving

service availability by prioritizing nodes with stable energy
sources. In [3], nodes are grouped based on their power
budget, prioritizing those with greater energy stability to
improve service availability. Similarly, faasHouse [5] leverages
computation offloading to balance energy availability across
battery-powered nodes, enhancing operational efficiency in
Kubernetes-based environments. In [6], approximate comput-
ing is used to balance energy efficiency and computational
accuracy, extending the lifespan of battery-powered edge de-
vices. Among the few works that do not focus on energy-
constrained devices, EcoFaaS [7] aims to improve energy
efficiency at the node level, by profiling functions and dynami-
cally scaling CPU frequency. Conversely, in [8], which targets
cloud environments, energy consumption reduction is achieved
through load balancing across function chains to distribute
workload and optimize system performance. However, these
works overlook node and function heterogeneity, a critical
factor in the edge-cloud continuum, where nodes have hetero-
geneous computational capacities and functions have diverse
execution deadlines and require different amount of resources.
In this paper, we present E2F1S: Energy-Efficient Function
Invocation Scheduling, a framework for optimizing resource
management in edge FaaS platforms, with a focus on energy
efficiency and QoS compliance, guaranteeing that functions
meet their deadlines. Unlike previous approaches, E2FIS
prioritizes workload consolidation, scheduling functions on
energy-efficient nodes and deactivating idle ones, achieving
system-wide energy savings. Additionally, it explicitly consid-
ers node and function heterogeneity, making it well-suited for
the edge-cloud continuum. We formulate function scheduling
as a Mixed Integer Linear Programming (MILP) problem to
minimize energy consumption by consolidating FaaS work-
load, assigning functions to energy-efficient nodes. Idle nodes
are switched off to reduce energy waste. MILP was chosen
for its ability to precisely model the problem and produce
optimal solutions under constrained resources and stringent
QoS requirements, as required in edge FaaS platforms. To
address scalability limitations [9], we adopted a time-limited
heuristic: when the optimization problem is solved within a
certain time, the optimal solution is used. Otherwise, the best
suboptimal solution available within that limit is employed.
We evaluate E2FIS through simulations using Microsoft
Azure traces [10] and through real experiments on the
Serverledge FaaS platform [11], comparing its performance
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against the Earliest Deadline First (EDF) scheduling [12].
Results show that E2F IS reduces energy consumption up to
92%, ensuring that functions execute within their deadlines.
The rest of the paper is organized as follows: Section II
provides background on edge computing and FaaS. Section III
details the MILP formulation behind E2FIS, which is then
evaluated through simulations (Section IV), and real experi-
ments (Section V). Finally, Section VI draws the conclusions.

II. TECHNICAL BACKGROUND

FaaS has evolved from cloud computing, allowing appli-
cations to be executed as a composition of self-contained
functions triggered by events, in a serverless fashion. The FaaS
platform manages the execution and scalability of functions
transparently for developers.

To support geographically pervasive applications, and those
with stringent QoS requirements, especially in terms of la-
tency, FaaS has extended to the edge-cloud continuum [5],
[13], integrating edge nodes near users and IoT devices.

Despite the variety of FaaS platforms for cloud and edge-
cloud environments [11], [14]-[16], they share a common
architecture. Functions are triggered by events (e.g., IoT
alarms, database changes, sensor readings) and are executed
on worker nodes. Function invocations may be dispatched by
a centralized gateway/load-balancer or through a distributed
scheduling approach, in which worker nodes manage execution
and dispatch of functions. In both cases, the decision on
which worker node a function should be executed is made
according to a certain policy, which takes into account the
requirements of the function and the current status of the
platform. Functions run in containerized environments like
Docker [17] for isolation and resource management.

Among open-source FaaS platforms, Serverledge [11] is
one of the few designed for the edge-cloud environment.
Its architecture, shown in Fig. 1, organizes nodes into edge
zones (serving regions near end users) and cloud regions
(data centers), to enable localized function scheduling and
minimize delays. Node memberships and registered functions,
are managed by a global registry to ensure scalability and fault
tolerance. The global registry is built on etcd [18], which is
a highly available, distributed, and consistent key-value store
designed to provide reliable data management for distributed
systems. Additionally, regions or zones, particularly cloud
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regions, may include a Load Balancer to evenly distribute
requests among the nodes within the region.

Serverledge enables function execution on distributed nodes
deployed at edge locations or cloud data centers. Each worker
node handles invocation requests using a local container
pool, ensuring function isolation. By maintaining a warm
pool of containers, it reduces initialization overhead for fre-
quently invoked functions. When edge nodes are overloaded,
Serverledge supports horizontal offloading (between edge
nodes) and vertical offloading (from edge to cloud), enhancing
scalability and flexibility during peak demand.

A Serverledge node, as shown in Fig. 1, is composed by:

o API Server: provides HTTP endpoints for creating, in-
voking, and managing functions.

o Local Registry: caches the global registry, storing in-
formation about nearby nodes, registered functions, and
monitoring local resources and neighboring nodes status.

o Scheduler: based on the workload, it assigns requests to
available nodes, allocating warm containers, initializing
new ones, or offloading requests, prioritizing low-latency
responses and resource balancing.

« Container Pool: manages function execution within con-
tainers, reusing warm containers to reduce initialization
overhead and dynamically adjusting to workload changes.

o Offloader: transfers invocation requests to other nodes
when local execution is not feasible. Requests are routed
on the basis of local registry data.

By integrating containerized execution, dynamic scheduling,
and offloading, Serverledge ensures an efficient and scalable
FaaS execution environment in the edge-cloud continuum [13].

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system architecture we considered
to define E2FIS, describes the system model, and presents
the problem formulation for E2FIS.

A. System Architecture and Model

The system architecture for E2FIS is shown in Fig. 2.
Function invocations are directed to the closest edge zone,
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where a gateway executes E2FIS. Time is divided into
discrete epochs, with the optimization problem at the core
of E2FIS (formulated in Section III-B) solved before each
epoch begins. The solution determines function assignments
to worker nodes and, hence, the minimum number of nodes
that must be active to handle the FaaS workload. Any idle
worker node is powered off to minimize energy consumption.

Each edge node ¢ is characterized by: (i) status;, indicating
if the node is active or powered off, (ii) C;, available com-
putational capacity, i.e., CPU, (iii) M;, available memory, (iv)
IPC;, instructions per cycle, which is the average number
of instructions executed per clock cycle, and (v) P;, power
consumption.

The functions registered in the FaaS platform are identified
by the set F' = {fi, fa,.... f;}. Each function f; is char-
acterized by: (i) m;, the amount of memory required for its
execution, (ii) w;, the number of instructions it requires to ex-
ecute, i.e., workload, and (iii) d;, deadline, the maximum time
that can elapse between function invocation and completion.

To ensure functions meet their deadlines, E?F IS assumes
the worst-case load to compute the function allocation to
nodes. Specifically, for each epoch, an estimate of the max-
imum number of concurrent invocations of a function within
a given time slot, denoted as n;, is provided as input. This
approach aligns with [19], where batches of requests are
scheduled for serverless workflows in the cloud-continuum.
A forecasting model could estimate n;, but load prediction is
beyond the scope of this paper. We assume n; is known in
advance, potentially derived using an off-the-shelf forecaster,
which could be seamlessly integrated into E2FIS without
modifications. The evaluation of £2FIS’s robustness to inac-
curacies in the forecasting model is left as future work.

B. Problem Formulation

At the core of E2FIS is an optimization problem, for-
mulated as a MILP, that determines the optimal functions
placement across worker nodes. It prioritizes execution on
the most energy-efficient nodes while ensuring functions meet
their deadlines, allowing idle nodes to be powered off. To de-
fine this optimization problem, we consider an edge zone with
N heterogeneous edge nodes, each with different computing
capacity, memory, and power consumption. The problem is
formulated as follows:

N
min Yy E; (1.1)
1=0
M
subject to Zni]-mj < M;y;, Vi (1.2)
j=0
M
> ey < Cyi Vi (1.3)
j=0
% <d;, Vi,V (1.4)
N
> nig=n;, Vj (1.5)
=0
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The model outputs: (i) node status for the next epoch, given
by the binary decision variable y;; (ii) expected maximum
number of concurrent invocations of function f; assigned to
node 7 for the next epoch, given by the decision variable n;;;
(iii) overall CPU allocated to function f; on node 4, given by
the decision variable c;;.

The objective function in Eq. 1.1 determines the set of active
edge nodes needed to execute functions within their deadlines,
while minimizing the total energy consumption of the system.
Here, E; is the energy consumption required to keep node ¢
active for the next epoch.

The constraint in Eq. 1.2 ensures that the total memory
required for executing function f; on node ¢ does not exceed
its memory capacity, where n;; is the maximum number of
concurrent requests to be allocated for function f; on node i.

The constraint in Eq. 1.3 ensures that the total CPU allo-
cated for all invocations of function f; on node ¢ does not
exceed its total CPU available.

Eq. 1.4 ensures that, for all nodes, the allocated resources
for each function are sufficient to guarantee execution within
its deadline, d;. Specifically, the execution time 7 is defined
as:

wj /

Cii
=4
J

Nij

T=

C; ' IP Cl ’
where cgj is the computational capacity allocated for function
f; on node ¢, w; is the function workload, and I PC} is the
number of instructions per clock cycle of node 3.

Finally, the constraint in Eq. 1.5 ensures that the total num-
ber of invocations of function f; assigned to each node 1, i.e.,
n;; matches the maximum number of concurrent invocations
expected in the edge zone for each function f;, i.e., n;.

Without loss of generality, we define each node’s compu-
tational capacity C; (GHz), available memory M; (GB), and
instantaneous power consumption P; (Watt). Additionally, we
model the energy consumption of each node, F;, assuming that
an active node continuously consumes its nominal power P;.
It is worth noting that alternative energy consumption models
can be seamlessly integrated into the problem formulation.

IV. SIMULATION ANALYSIS

We conducted both simulations and real-world experiments
to evaluate the performance of E2FIS. Simulations offer
insights into its large-scale behavior, allowing us to explore
a broad range of parameters and configurations that would be
challenging to assess in a real testbed. Conversely, real-world
experiments, though conducted on a smaller scale, demonstrate
the practical feasibility and effectiveness of the proposed
framework. In this Section, we focus on the simulation-
based evaluation of E2F IS, analyzing its performance across
various parameters and configurations. We first present the
simulation setup (Section IV-A) and then discuss the results
(Section IV-B).

A. Simulation Setup

We implemented the optimization problem at the core of
E?FIS in Python, utilizing OR-Tools [20], an open-source
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combinatorial optimization suite developed by Google, to
solve it. Specifically, we employed the Constraint Program-
ming SATisfiability (CP-SAT) solver, which combines Con-
straint Programming (CP) and Boolean Satisfiability (SAT)
techniques, encoding constraints as Boolean formulas to effi-
ciently solve MILP-based problems. For ease of deployment,
we integrated the solver with a Flask-based server' exposing
HTTP APIs and encapsulated it in a Docker container. This
setup enables seamless execution across simulations and real
experiments without requiring any change in the code.

The simulator developed to evaluate E2FIS replicates the
behavior of a system with many edge nodes, each character-
ized by specific computational capacity, memory, and power
consumption. The node parameters we used are taken from
realistic values [21]-[23], and are summarized in Table I.
We simulated an edge zone with 20 heterogeneous nodes,
distributed according to the node type percentages in Table I.
The FaaS platform hosted 40 registered functions, which is a
realistic configuration in such environments [11]. We consid-
ered epochs of varying durations: 15, 30, and 60 minutes.

The simulator divides time into epochs and solves the MILP
problem, before the start of each epoch, to determine the
optimal functions placement. This requires up-to-date resource
and function data for each epoch, allowing the CP-SAT solver
to decide which nodes should remain active and the allocation
of functions for the next epoch. To ensure practical execution
times, we set a 400-second limit for the solver. If an optimal
allocation is not found within this time, the solver returns a
feasible, but potentially suboptimal, solution. In cases where
system resources are insufficient to meet all function QoS
requirements, the solver fails, resulting in the activation of all
nodes and function assignment based on the EDF approach.

To realistically simulate function invocations, we used real
traces from the Microsoft Azure dataset [10], which contains
serverless workload data collected over two weeks in 2019.
From this dataset, we extracted the number of function in-
vocations and their deadlines. The latter, were computed as
d; = pj + 204, where p; is the mean execution time of f;,
and o is its standard deviation.

We define the evaluation scenarios by classifying function
invocation load as Low Intensity (LI) or High Intensity
(HI) and function deadlines as Short Deadline (SD) or Long
Deadline (LD). In LI scenarios, functions receive at most a
few hundred invocations per 1-second time interval, whereas
in HI scenarios, the invocation count reaches thousands. This
directly impacts the maximum number of concurrent invo-
cations, as a higher number of function invocations leads to
greater concurrency demands within the given time interval.
LD scenarios feature deadlines ranging from several to tens of
seconds, whereas SD scenarios have stricter deadlines in the
millisecond range. Our four evaluation scenarios, ordered from
the most demanding (highest workload and strictest deadlines)
to the least demanding are: SD-HI, LD-HI, SD-LI, LD-LI.

As discussed in Section III, predicting the maximum number

Thttps://palletsprojects.com/projects/flask
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TABLE I: Characteristics of the heterogeneous (edge) worker
nodes considered in the simulations.

CPU Memory Power % node used
Node ID Gy, coresy  (GB) € (W)  in simulation
A 1.8, 4 8 0.5 4 20% of 20
B 24,4 8 0.5 6 20% of 20
C 32,6 16 1.0 150 15% of 20
D 24,12 16 1.5 200 10% of 20
E 33,8 32 1.0 230 15% of 20
F 3.1, 16 32 2.0 300 10% of 20
G 2.6, 16 64 3.0 350 10% of 20

of concurrent invocations for each function in the next epoch is
beyond the scope of this work. Therefore, in our experiments,
we assume an ideal predictor that accurately determines this
value at the start of each epoch.

To evaluate E2FIS, we use Earliest Deadline First (EDF)
as a baseline comparison. EDF is a widely used scheduling
algorithm for real-time systems [12] that prioritizes function
execution based on deadline proximity, assigning higher pri-
ority to functions with the earliest deadlines. In our EDF
implementation, nodes are first sorted by computational and
memory capacity, favoring those with higher resources. Func-
tions are then ordered by deadline, prioritizing those with the
shortest completion times. The scheduler assigns high-priority
functions to high-capacity nodes, aiming to optimize resource
usage and ensure deadline adherence.

To assess the effectiveness of E2FIS, we define the fol-
lowing evaluation metrics: (i) energy consumption: the total
energy, in KWh, consumed by active nodes over the evaluation
period (one full day). It is calculated as the cumulative sum
of energy consumed by all active nodes, based on their
power consumption; (ii) computational capacity utilization:
the percentage of the total available computational capacity
utilized by active nodes in each epoch; (iii) system mem-
ory utilization: the percentage of the total available memory
utilized by the active nodes in each epoch; (iv) number of
active nodes: the number of nodes that remain active in each
epoch. Additionally, to gain deeper insights into the system’s
behavior, we analyze the solver’s performance, evaluating the
percentage of solutions classified as feasible, or unfeasible.

The results presented in the graphs are derived from simu-
lations where E2?FIS and EDF schedule function invocations
over a full day. Metrics are computed per epoch, and to ensure
statistical sound results, we report their average values along
with the 95% confidence interval. An exception is energy
consumption, which is measured as the total daily energy
usage of the edge zone. In this case, the reported value
represents the cumulative energy consumed throughout the day
by the nodes that remained active in each epoch.

B. Simulation Results

Fig. 3 presents the total energy consumption for E2F IS and
EDF over a full day of simulation with 40 functions regis-
tered on the FaaS platform. Experiments were also conducted
with different numbers of functions, but for the sake of brevity,
these results are omitted because they exhibit similar trends.
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The three graphs in (Fig. 3) display energy consumption
values when considering the epoch duration of 15, 30, and
60 minutes, respectively.

Let us start analyzing these results considering Fig. 3a, i.e.,
when epochs are 15 minutes long. As shown in the graph,
E2FIS consistently achieves lower energy consumption com-
pared to EDF, with savings ranging from 21% to 92%, depend-
ing on the scenario. The lowest energy saving occurs in the
SD-HI scenario, which is characterized by tight deadlines and
high invocation intensity. However, when deadlines are more
relaxed (LD-HI) or invocation intensity decreases (SD-LI, LD-
LI), energy saving increases significantly. This is because, in
less congested scenarios, there is greater flexibility in function
allocation, allowing E?FIS to keep active only the most
energy-efficient nodes. These nodes are often less powerful
in terms of computational resources, whereas EDF prioritizes
activating the most powerful nodes first to ensure functions
meet their deadlines. This results in unnecessary energy waste,
as high-performance nodes consume more power.

If we analyze energy consumption over longer epochs,
such as 30 and 60 minutes (Figs. 3b and 3c), we observe
a trend where E2FIS energy savings gradually decrease.
This reduction is almost negligible in low-intensity scenarios
but becomes more significant when the number of function
invocations is high. This behavior is due to the reduced
precision in function allocation with longer epochs. Larger
time windows increase the likelihood of high peaks in the
number of concurrent function invocations, making it more
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and EDF exhibit the same energy consumption, we observe
that E2F1IS behaves like EDF in this scenario, since both
scheduling policies activate all nodes, leading to comparable
energy usage.

To further analyze E2F1S’s behavior, Fig. 4 illustrates the
percentage of solutions of the optimization problem classified
as feasible (green) or unfeasible (red with bars). These results
align with the previous analysis, confirming that feasibility
decreases as system load and epoch duration increase. Specif-
ically, in the SD-HI scenario, where the system experiences
high load, a significant portion of solutions (45%) is unfeasible
for epochs of 30 minutes, while for 60 minutes epochs, no
feasible solution is found. For readability, we excluded lower-
load scenarios (SD-LI and LD-LI) from the graph, as with
lower function invocation intensity, E2F IS consistently finds
feasible solutions, resulting in all green bars.

Another key aspect in comparing E2FIS and EDF is
the average number of active nodes per epoch, as shown
in Fig. 5, across all scenarios and epoch durations. In most
cases, E2FIS consistently activates more nodes than EDF,
despite achieving greater energy efficiency (Fig. 3). This
behavior is directly linked to the optimization strategy at the
core of E2FIS, which prioritizes function allocation to the
most energy-efficient nodes. These nodes typically have lower
computational capacity, requiring more nodes to be activated
to handle the system’s workload. However, even with a higher
number of active nodes, overall energy consumption remains
lower or, at worst, comparable to that of EDF. The cases in
which both E2FIS and EDF activate almost all nodes, i.e.,
20, occur when a significant portion (or all) of the allocations
cannot be determined, as the optimization problem fails to find
a QoS compliant solution.
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To conclude the simulation analysis, we report per-epoch
estimation of CPU (Fig. 6) and memory utilization (Fig. 7) for
all active nodes. It is important to note that, in the simulator,
the functions are not actually executed. Therefore, resource
utilization is estimated based on each function’s workload,
memory and CPU requirements, and deadline. For brevity,
we report only the two most loaded scenarios, as the same
trend applies to the others. Additionally, since this estimation
relies on the function allocation policy, it cannot be computed
when all the solutions are unfeasible. This is why a red
“X’ marker appears in the graph. Regarding CPU utilization,
E2F1S shows utilization percentages comparable to or higher
than EDF. This aligns with the approach of E2FIS, which
consolidates the workload on energy-efficient nodes, leading
to higher resource utilization and minimizing computational
waste. In contrast, EDF prioritizes more powerful nodes,
which often remain underutilized due to its allocation strategy.
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To evaluate the effectiveness and practicality of E2FIS, we
carried out real-world experiments on the Serverledge FaaS
platform, complementing simulation insights under realistic
conditions. We first describe the experimental setup, including
E?FIS integration [24], hardware configuration, and work-
load characteristics, followed by a discussion of the results.

A. Experimental Setup

E?FIS has been integrated into Serverledge by developing
a solver module and introducing a Load Balancer which acts
as a reverse proxy to enforce the solver’s scheduling policy
for the assignment of functions.

The solver module, deployable on any Serverledge node
(referred to as the Solver Node or simply the Solver), commu-
nicates with other nodes using Serverledge’s edge monitoring
mechanisms, as shown in Fig. 8. Through packet exchanges,
edge nodes transmit to the Solver Node the necessary infor-
mation to solve the E2FIS optimization problem, including
function details and node-specific data. At the start of each
epoch, the Solver processes these data, determines the function
allocation, and stores them in the global registry.
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TABLE II: Characteristics of the heterogeneous (edge) worker
nodes considered in the real deployment

Role Node ID CPU Specs Memory P Power
(GHz, cores) (GB) (W)

CLOUD 0.1 22,4 8 N/A N/A
SOLVER +

LOAD 0.2 22,2 2 N/A N/A
BALANCER
EDGE 1 27,2 2 245 6
EDGE 2 28,4 8 220 130
EDGE 3 2.8, 16 32 245 250
EDGE 4 2.7, 4 4 245 100
EDGE 5 2.8, 4 4 2.15 100

TABLE III: Details of functions used in the experiments

Number of Memory Deadline n;-High n;-Medium

Name . .

instructions (GB) (s) workload workload
Isprime 1 5.86 x 107 0.128 0.08 10 4
Isprime 2 5.86 x 107 0.128 0.08 10 4
Jsonschema 4.84 x 108 0.128 0.13 3 3
Lmea}f 1.38x 10° 0.128 037 1 1
searc!
Kemeans 4 16109 0256 0.41 5 5
clustering
Integer 4 57 1010 0128 382 6 3
factorization
Caesar 220 x 1019 0.128  5.68 4 3
cipher
Count 522 x 1010 0128 1271 3 3
mversions
Bubblesort 1 7.81 x 1010 0.128 19.1 5 5
Bubblesort 2 4.91 x 1011 0.256 119 3 3

The Load Balancer incorporates an observer of the etcd
global registry to monitor any updates in real time. Upon
detecting a new allocation, the observer triggers the Load Bal-
ancer, which uses the Serverledge API to create the necessary
containers on assigned nodes for the next epoch. If the Solver
fails to provide an allocation (unfeasible solution), the Load
Balancer resorts to an EDF-like policy.

For the experiments, we consider an edge zone with 7
nodes equipped with amd64-architecture CPUs, as detailed in
Table II. Node 0.1 hosts the etcd global registry, and Node
0.2 runs the Solver and Load Balancer, both always active
and thus excluded from power consumption calculations. The
remaining five worker nodes handle the execution of functions.

To estimate nodes’ IPC, we executed the functions listed in
Table III, and profiled their execution using the perf tool [25],
which provides IPC and instruction count metrics. The average
IPC per node was computed by averaging IPC values across
all the considered functions. Similarly, the instructions count
for each function (Table III), was derived from the profiling
data collected by executing perf on each node.

In our experiments, we considered 15 and 30 minute epochs
and evaluated two workload types, defined by different values
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of the maximum number of concurrent function invocations
per 1-second time slot, n;: high and medium workload, as
shown in Table III. For instance, the Isprime I function has a
maximum of 10 concurrent invocations per second (4) under
the high (medium) workload scenario. We tested each scenario
over five experiments to ensure statistically sound results.

B. Experimental Results

Fig. 9 shows the energy consumption of E2FIS and EDF
over a single epoch. The results obtained from real-world
experiments confirm the findings from the simulations, demon-
strating that E2F IS achieves a significant reduction in energy
consumption compared to EDF. This effect is particularly
evident for 15 minute epochs, where energy consumption is re-
duced in a range from 22% to 25%. However, for longer epoch
durations, the reduction becomes less pronounced (ranges
from 2% to 5%), which aligns with the observations from
the simulation analysis. Specifically, longer epochs decrease
scheduling granularity, making it more challenging to consol-
idate workloads effectively and power off idle nodes.

Beyond energy consumption, real-world experiments al-
lowed us to obtain precise insights into CPU and memory
utilization (Fig. 11) on a per-node level, enabling a more
granular analysis compared to simulations. Both graphs focus
on a 15 minute epoch duration. Results for 30 minute epochs
are omitted for brevity, as they exhibit a similar trend.

From Fig. 10, we observe significantly different node uti-
lization patterns between the two scheduling policies. E2F IS

Authorized licensed use limited to: University of Patras. Downloaded on October 17,2025 at 13:54:59 UTC from IEEE Xplore. Restrictions apply.



Epoch duration: 15 minutes

100
—~ 904 I EZFIS, High workload
§ 80{ XXJ EDF, High workload
S 70] EEE EZ?FIS, Medium workload
E 601 E==I EDF, Medium workload
% 50
> 40
o 30
:]E, 20
= 10

Fig. 11: Memory utilization. Real experiments

predominantly relies on Node 1 in both high and medium
workload scenarios. This behavior aligns with the core princi-
ple of E2F 1S, as Node 1 has the lowest power consumption,
making it the preferred choice for energy-efficient scheduling.
Conversely, EDF prioritizes nodes with higher CPU frequen-
cies, particularly Nodes 2, 4, and 5, which offer greater
computational capacity but are less energy-efficient.

This difference in scheduling behavior is also reflected in
Fig. 11, where memory utilization follows the same pattern as
CPU usage. Nodes that experience higher CPU utilization also
exhibit higher memory consumption, further confirming that
the scheduling strategy directly impacts resource utilization.

VI. CONCLUSIONS

In this paper, we proposed E2FIS (Energy-Efficient Func-
tion Invocation Scheduling), a novel framework for optimizing
function scheduling in edge FaaS platforms. By modeling the
problem as a MILP, E2FIS reduces energy consumption
while meeting function deadlines, prioritizing execution on
energy-efficient nodes and powering off idle ones. We evalu-
ated E2FIS through simulations and real-world experiments.
Simulations allowed us to analyze the system performance
under various workload, and the results showed that E2FIS
outperforms Earliest Deadline First (EDF), achieving up to
92% energy consumption reduction under low load, and main-
taining savings even in high-load scenarios by consolidating
execution on energy-efficient nodes. Real-world experiments
on Serverledge confirmed its energy-saving potential and ef-
fectiveness in dynamic and realistic operational conditions.

For future work, we will explore distributed scheduling to
enhance scalability and reduce computation time in large-scale
edge deployments.
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