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Abstract—Low Earth Orbit (LEO) satellite constellations
provide a wide range of services such as communications,
earth observation, signal monitoring, and scientific missions.
While these constellations generate valuable data, transferring
it to ground stations (GS) for machine learning-based analysis
presents significant challenges due to downlink bandwidth and
energy constraints. Federated Learning (FL) integrated with
Orbital Edge Computing (OEC) has been explored as a solution
to these challenges. This paper presents FedSCS (Satellite Client
Selection), a novel energy-efficient and decentralised FL frame-
work designed to optimise communication with GSs and minimise
energy consumption. FedSCS selects satellites (clients) based on
their available resources and utilises reinforcement learning for
cluster formation. The performance evaluation conducted under
the Walker Delta-based LEO constellation across various datasets
reveals that FedSCS can sustain high accuracy while considerably
reducing training time and energy consumption. FedSCS achieves
a notable reduction in energy consumption of 6.67%, 10.34%,
and 9.09% compared to the recently developed FedOrbit on the
MNIST, CIFAR-10, and EuroSat datasets, while also achieving
a slight improvement in accuracy.

Index Terms—Client Selection, Federated Learning, Orbital
Edge Computing, Energy Consumption.

I. INTRODUCTION

Satellites in Low Earth Orbit (LEO) have gained significant
attention in recent years due to technological improvements
and their applications in various fields [24]. Since LEO satel-
lites produce a large amount of data, artificial intelligence (AI)
and machine learning (ML) have been incorporated into the
Ground Station (GS) to analyse the data produced. Orbital
Edge Computing (OEC) leverages satellite-based systems to
process data closer to its source, reducing latency and enhanc-
ing the efficiency of global communications [5].

Federated Learning (FL) [22] is applied in OEC for decen-
tralised machine learning among satellites (clients). It allows
satellites to train ML models onboard without transmitting
raw data, reducing communication overhead. The process
depends on a global server, which in this scenario is the GS,
to aggregate model updates from participating satellites. A
challenge in this context is the high energy consumption and
inefficiency of FL training in space-based systems. Running
complex ML models onboard LEO satellites is computation-
ally intensive and energy-demanding, especially with limited
power availability from solar panels. Additionally, traditional

FL relies on GS-based model aggregation, which leads to long
training times and high power consumption [3], [14].

The advances of Inter-Satellite Links (ISLs) [2] offer a
promising approach to collaboration among satellites by en-
abling direct satellite-to-satellite communication [9] [33], po-
tentially reducing dependence on GSs for model aggregation.
However, ISL-based FL introduces new challenges, including
extended training durations, energy constraints, and accuracy
degradation. Previous efforts to implement decentralised FL
aggregation via ISLs have encountered problems such as
model aging and reduced accuracy, primarily due to high data
similarity within the same orbital regions [8]. Additionally,
client selection strategy is another critical factor affecting FL
performance [11], as LEO satellites are heterogeneous, differ-
ing in battery capacity, computational capabilities, memory,
and communication availability [19].

In response to these challenges, this paper introduces a new
FL approach (FedSCS) for OEC. It optimises client selection,
ensuring that satellites are chosen based on computational
resources, battery capacity, and communication availability,
thereby reducing inefficient participation and accelerating
model convergence. The proposed approach enhances energy
efficiency while maintaining model accuracy. The contribu-
tions of this paper are as follows:

• It proposes FedSCS, a decentralised federated learning
approach that selects clients based on their resources and
predicts the future available resources for the selection.

• It proposes a new strategy based on a resource prediction
model and communication strategy to cluster satellites
to improve the energy consumption and training perfor-
mance.

• It conducts comprehensive experiments across diverse
datasets to demonstrate the performance of FedSCS with
remarkable improvements in training time, energy con-
sumption and accuracy.

The rest of this paper is organised as follows. Related work is
presented in Section II. The system model and problem formu-
lation are presented in Section III. In Section IV, we present
the proposed FedSCS algorithm. Performance evaluation and
experimental results are presented in Section V. Conclusion
and future work are discussed in Section VI.
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II. RELATED WORK

This section provides recent advancements in the application
of FL and client selection in OEC.

A. Federated Learning in Orbital Edge Computing

Early FL approaches in LEO Satellite Networks [4] applied
FedAvg to the constellations to validate the effectiveness of
FL in satellite networks. However, the synchronous nature
of FedAvg requires a constant connection to GS. leading to
long convergence times, potentially taking several days to
complete a model update. FedSat [25] is an asynchronous FL
approach where the global server does not need to wait for
all client updates for aggregation. Although this accelerates
convergence, it leads to model aging, since satellites with low
computational power or poor connectivity fall significantly
behind in the global rounds.

FedSpace [30] is an asynchronous Federated Learning algo-
rithm that buffers client models and prioritises newer updates
for aggregation. It adjusts global model aggregation schedules
based on satellite orbits and Earth’s rotation, ensuring satellites
with better connectivity and fresher models contribute effec-
tively. FedISL [28] [26] utilises inter-satellite links (ISLs) to
facilitate direct satellite-to-satellite communication, reducing
reliance on GS. Building on this, FedSatSchedule [27] was
proposed as a scheduling algorithm that determines whether a
satellite can complete local training during the communication
window. This scheduling mechanism is essential due to the
brief visibility period of satellites with GS. FedGSM [34] was
introduced as an advanced asynchronous FL algorithm that
incorporates a gradient staleness compensation mechanism to
mitigate the impact of outdated model updates.

B. Client Selection in Orbital Edge Computing

Client selection plays a crucial role in FL, which identifies
which clients participate in each training round to improve
training efficiency and reduce resource consumption. There is
limited work related to the client selection for FL in OEC.
FedLEO [9] is a synchronous FL algorithm that selects an
optimal sink satellite in each orbit to generate a partial global
model. It optimises communication between sink satellites
and the GS by using predictable satellite orbits. FELLO
[3] is an FL algorithm that aims to minimise reliance on
GSs by enabling satellites to perform onboard training and
decentralised model aggregation while maintaining efficient
communication. FedOrbit [15] proposed a novel decentralised
FL approach in a cluster formation based on visiting patterns,
ISLs plane and reinforcement learning. One satellite is chosen
as the master to aggregate local models before transmitting
updates to the next level. It utilises Block Minifloat (BM) to
accelerate FL training on custom hardware (i.e., FPGA). Wu et
al. [32] introduced a client affinity-based approach, selecting
satellites based on measuring the contribution of the client
to the global model. While many existing works have been
proposed to tackle FL in OEC, there is a significant gap in
the literature when addressing client selection in OEC.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section includes the system architecture for satellite
constellations equipped with ISL. The satellites are heteroge-
neous and have different battery, CPU, and memory capacities.
This paper considers a satellite constellation including a dis-
tinct number of orbit planes (OPs) and satellites. A unique ID
is assigned to each satellite according to its OP number. An
orbit set is defined as O = {oi} where i = {1, 2, ..., n}. In
a similar manner, the satellite set is denoted as S = {si,j}
where j = {1, 2, . . . , l}. Thus, each orbit oi contains l equally
spaced satellites with unique IDs {Si,1, Si,2, . . . , Si,l}.

Satellites form clusters with neighbouring nodes based
on inter-satellite link range, terminals, and limitations. The
clustering process, which takes into account both intra-plane
and inter-plane inter-satellite links, together with the selection
of master satellites for ground station communication, is
illustrated in Figure 1. The satellites shown in yellow are the
master nodes that maintain connection with the ground station,
while the rest must await the subsequent visitation time.

The proposed FL approach has multiple phases: Initialisa-
tion, Client Selection, Cluster Formation and Master Selection,
Training, and Aggregation phase. Initially, one satellite per
orbit receives the model from GS and distributes it to its intra-
orbital neighbours [26]. Upon distribution, satellites advance
to the next phase. Satellites are divided into c clusters, where
satellite j ∈ {1, 2, . . . , l} in orbit i gathers and retains a
dataset Di,j . This local dataset is utilised to train a machine
learning model using the Federated Average peer-to-peer [20].
Each cluster Ck (k ∈ {1, 2, . . . , c}) comprises a collection of
satellites, wherein the training process is coordinated by one of
the satellites within the cluster. The satellite, designated as the
master satellite, transmits a request to its cluster neighbours
within the ISL range at round t, to establish a cluster and
get their updated weights for aggregation. Upon completion
of the parameter distribution and clustering phases, all satel-
lites commence their local training and aggregation phases,
utilising the computational model delineated in Section III.A.
Thereafter, the master satellites convey their revised weights
to the GS at the subsequent communication opportunity.
The GS executes the global aggregation phase by integrating
the updated weights received from the master satellites and
disseminates the new global model to the satellites during the
subsequent communication interval.

A. Computation and Communication Model

Satellites collaborate to learn the global model by minimis-
ing a global objective function in cluster k as follows:

w∗ = minFk(w) (1)

The global loss function is calculated as:

Fk(w) =
∑

i,j∈O,S

D(i,j)k

Dk
fi,j(w) (2)

where Di,j = |Di,j |, Dk =
∑

i,j∈OS D(i,j)k is the size of the
whole dataset in the cluster k, w is the model parameter, and
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Fig. 1. Orbital Edge Computing Architecture

fi,j(w) is the local loss function that is computed for each
dataset Di,j as follows:

fi,j(w) =
1

Di,j

∑
x∈Di,j

fi,j(w;x) (3)

where fi,j(w;x) is training loss for a data point x and model
parameter w. Each satellite receives its own model via the first
phase and can communicate with its cluster master satellite via
ISLs and continue the collaboration as proposed in [15].

In this paper, we assume the existence of free space op-
tics (FSO) communication links between satellites to tackle
sporadic connectivity with ground stations. These linkages
are classified into four types: terrestrial, aerial (nonterrestrial),
space, and deep-space [13]. In this study, FSO links between
satellites are referred to as InterSatellite Links (ISLs). In
our approach, GS communication is only required at the
initialisation phase and final aggregation at each training step,
where master satellites send their clusters’ local updates to
GS for final aggregation. For successful communication, the
satellite must be positioned within the ground station’s field
of view, exceeding a specified minimum elevation angle above
the horizon, so that satellites and GS are visible to each other.
The minimum elevation angle ζe, the satellite Soz,i and GS
can visit each other if π

2 −∠(pGS , p(oz,i)−pGS) ≥ ζe, where
pGS and p(oz,i) present the position of GS and satellite Soz,i,
respectively.

B. Energy Consumption Model

The energy consumption of laser communication satel-
lites can be categorised into three main components: (i) the
utilisation of fundamental functions, such as sustaining the

satellite’s height and adjusting its solar panels; (ii) the energy
consumption of communication; and (iii) the energy consumed
by the on-board processor during the training process.

Etotal = Ebase + Ecomm + Ecomp (4)

In this paper, we focus on the communication energy Ecomm,
and the computation energy Ecomp as the main factor for the
consumed energy. The base energy consumption is considered
constant. The computational energy consumption of satellites
comprises both cluster-based computation energy and aggrega-
tion energy. During a training task, a model that incorporates
the most critical CPU parameters is considered [31] [21]. The
total energy consumption during processing is expressed as:

Ecomp = Ecomp cluster + Eaggregation (5)

Ecomp cluster =
c∑

k=1

∑
si,j∈Ck

Nk · (
1

2
ωci,jZ(Di,j)f

2
i,j) (6)

Eaggregation =
∑

si,j∈S|master

1

2
ωci,jMi,jf

2
i,j (7)

where ωi,j represents the effective capacitance coefficient, ci,j
is the number of CPU cycles to process one bit of data for
si,j , Z(Di,j) is the number of bits in dataset, fi,j is the CPU
frequency, Nk is the number of nodes in a cluster k, and Mi,j

is the model size. Please note that equation 7 is only applied
for the master satellites.

The communication energy consumption of satellites in-
cludes the energy consumed by laser terminals for establishing
ISLs and the energy consumed by microwave communication
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antennas for connecting GS with satellites. For each compo-
nent, the energy will be obtained as follows:

Ecomm = EISL + EGS (8)

The energy consumption for ISL communications is given by:

EISL =
c∑

k=1

∑
si,j∈Ck

(PT + aRISL
i,j ).Ti,j (9)

The energy consumption for GS communications is given by:

EGS =
∑

si,j∈S|master

(PA + bRGS
i,j ).Ti,j (10)

where PT , PA are the basic power of the satellite laser
terminal and microwave antenna, respectively. Also, a is ISL
coefficient, b is GS coefficient with the values of a = 1,
b = 5 [14]. RISL

i,j is the ISL data rate and RGS
i,j is the GS

data rate. The communication time between satellites or with
the GS can be calculated as follows [18]:

Ti,j =
Mi,j

Ri,j log2(1 +
Ghp
σ )

(11)

where Ri,j should be RISL
i,j in Equation 9, and RGS

i,j in
Equation 10, G is gain to noise temperature ratio, h is system
loss, p is transmit power and σ is noise power.

C. Resource Model

Traditional FL approaches select clients randomly, which
may lead to inefficiencies when clients with limited resources
are chosen, as it increases the energy consumption, the training
time, and the system latency. Using predictive models that can
predict the resource availability of clients before their selection
represents a promising approach to improve the system’s
performance. Resource prediction enables more intelligent
client selection in FL, where it optimises task allocation of
computational load according to the predicted availability.
Developing prediction models for client resources requires
considering the temporal patterns of resource usage, especially
for the satellite systems with heterogeneous capabilities of the
client’s (e.g., battery, CPU, and memory). To quantify the
resources availability, the prediction model will predict the
percentage of battery, CPU, and memory that is available for
each satellite in LEO constellations for model training. Based
on that, the estimated training rounds for each satellite with a
focus on energy consumption can be calculated as below:

Ri,j = min

(⌊
bi,j

Etotal
.Rtotal

⌋
, Rtotal

)
(12)

where Rtotal is the total number of rounds in the FL process
that a satellite with sufficient resources can perform. Each
satellite is scored based on three key resources: battery level
(bi,j), CPU availability (ui,j), and memory availability (yi,j).
The score is calculated as follows:

scorei,j = α.
bi,j

Etotal
+ β.ui,j + γ.yi,j (13)

The weighting constants (α, β, and γ) are assigned values
reflecting the relative importance of each resource.

For accurate resource prediction in FL, many machine learn-
ing methodologies can be used, and among these, Long Short
Term Memory (LSTM) appears to be particularly well suited
to this task. LSTMs are a form of recurrent neural network to
manage sequential data and capture long-range relationships.
In contrast to traditional RNNs, LSTM networks proficiently
retain information across prolonged sequences without expe-
riencing the vanishing gradient problem [29]. This capacity
arises from their advanced gating mechanism—employing
forget, input, and output gates—that manages memory up-
grades and inhibits information deterioration over extended
sequences. LSTMs are proficient in learning from past obser-
vations and preserving that knowledge, rendering them suitable
for capturing the nonlinear dynamics characteristic of resource
utilisation patterns. Their capacity to consistently adjust to
changing data patterns makes them an ideal selection for
resource monitoring in distributed systems [10].

IV. THE PROPOSED ALGORITHM

This section discusses the proposed FedSCS approach. The
proposed algorithm has five phases, including initialisation,
client selection, clustering and master selection, local training,
and aggregation, which are explained in Algorithm 1. The
initial phase distributes model parameters to satellites before
training begins. Afterwards, client selection is performed based
on Algorithm 2. The algorithm applies Clustering and Master
Satellite Selection using the reinforcement learning (RL) ap-
proach presented in [15], and the master selection is discussed
in Algorithm 3. Once master satellites and clusters are estab-
lished, satellites proceed with local training and aggregation.
In the final phase, master satellites transmit updated weights
to the GS during their next visit. The GS executes global
aggregation using the received updates and broadcasts the new
global model to satellites during subsequent visits.

A. Client Selection

Client selection is one of the main steps in FedSCS, which
is intended to determine the most appropriate satellites for par-
ticipation in the current training cycle of FL. The selection pro-
cedure prioritises satellites according to resource availability
and energy efficiency. The selection process operates through
a two-step approach: resource prediction and client scoring.
The system relies on a 2-layer LSTM with 64 hidden units and
a fully connected layer for the resource prediction. Initially,
the system generates random initial values within realistic
ranges and begins collecting actual measurements of battery,
CPU, and memory usage during each training round. These
measurements are normalised and fed into the LSTM model
as sequential data, enabling the prediction of future resource
states. The system maintains its accuracy by implementing a
sliding window approach, where in each training round, new
measurements are added while older ones are removed, and
the LSTM model is retrained with this updated data.
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Algorithm 1 FedSCS Algorithm
1: Parameter Distribution Phase
2: Input: communication rounds R; satellites set S; orbits

set O; local training epochs n; fraction of neighbours e;
learning rate η; number of required clients p

3: Output: Trained global model parameters
4: w0 ← Initial model parameters
5: for each round t = 1, 2, ..., R do
6: Client Selection Phase
7: St ← CLIENTSELECTION(S, p, t) in Algorithm 2
8: Cluster Formation Phase
9: Ck ← CLUSTERFORMATION(St)

10: L←MASTERSELECTION(lcandidates) in Algorithm 3
11: // Local Training Phase
12: for all satellite si,j ∈ cluster Ck do
13: LocalTraining(si,j , w)
14: Partition data D: Di,j ← (si,j)
15: for each local epoch e from 1 to n do
16: wt+1

i,j ← wt
i,j − η∇fi,j(wt

i,j)
17: end for
18: end for
19: // Local Aggregation Phase
20: for each master satellite L in parallel do
21: v = max{m× e, 2}
22: Ni, j = (random set of v neighbors in cluster k)
23: for each neighbor si,j ∈ Ni,j in parallel do
24: wt

i,j = LocalTraining(si,j , w)
25: end for
26: wt+1

i,j = wt
i,j − η∇fi,j(wt

i,j) +
∑

s∈Ni,j
(wi,j −

η∇fi,j(wt
i,j))

27: end for
28: // Global Aggregation phase
29: GS receives local updates wt+1

i,j from all master satel-
lites

30: wt+1 ← 1
c

∑
j∈S

∑
i∈O

Di,j

D wt
i,j

31: end for=0

The actual selection process as presented in Algorithm 2
begins with inputs including the complete set of avail-
able satellites, the required number of clients, the cur-
rent round, and resource parameters (battery, CPU, mem-
ory). For each satellite, the system first uses the LSTM to
predict future resource availability through three functions,
PREDICTBATTERY, PREDICTCPU, PREDICTMEMORY. Each
function processes normalised historical data through dedi-
cated input features. The PREDICTBATTERY function con-
siders battery consumption rates, implements a decay factor
that prioritises recent measurements, and accounts for solar
recharging patterns. The Battery Consumption Rate is given
as:

CRt = Bt −Bt−1 (14)

Where Bt is the battery level at time t. Decay Factor is given
as [35]:

DFt = e−0.1·
T−t
T (15)

where T is the total time sequence length. Solar Recharging
Pattern is given as [7] :

ToDt =
t mod 24

24
(16)

to capture the 24-hour solar cycle. The battery feature vector:

Xbattery
t = [Bt, CRt, DFt, T oDt] (17)

The values are normalised and passed through the model, the
output value is inverse transformed, and the predicted battery
B̂t+1 for the next time step is found. The PREDICTCPU
function analyses the utilisation rates and captures the training
cycle. CPU utilisation rate is calculated as:

URt = CPt − CPt−1 (18)

where CPt is the CPU usage percentage at time t. The training
cycle is given as [6]:

TCt =
t mod 8

8
(19)

This captures the 8-hour training cycle. The CPU feature
vector is:

XCPU
t = [CPt, URt, TCt] (20)

All features are normalised and passed through the model,
the output value is inverse transformed, and the CPU pre-
dicted value Ĉt+1 is predicted for the next round. The
PREDICTMEMORY function examines usage patterns and
memory release information. It checks the memory growth
as below:

GRt = Mt −Mt−1 (21)

where Mt is the memory usage at time t. The memory release
cycle in 12 hours is given as [16]:

MRt =
t mod 12

12
(22)

The memory vector feature is:

Xmemory
t = [Mt, GRt,MRt] (23)

The features are normalised, passed through the model, and
the output value is inverse transformed to find the predicted
memory M̂t+1 in the next step. The system continuously
monitors prediction accuracy by comparing predictions with
actual measurements and adjusts weights accordingly. The
selection process begins with these predictions for each satel-
lite, which calculates energy requirements by computing both
computational energy based on CPU and memory usage,
and communication energy, combining these for total energy
requirements.

Satellites with available battery power are evaluated using
two metrics: possible participation rounds as explained in
Equation 12 to determine how many rounds they can par-
ticipate in without exceeding their resource limitations, and
resource-weighted score as given in Equation 13. Clients are
scored and sorted in descending order, and the m satellites
with the highest scores are selected for participation in the
training round, forming the final selected set. After that, all
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Algorithm 2 Client Selection Algorithm
1: Input: Set of satellites S, required clients m, current

round t, battery b, CPU u, memory y
2: Output: Selected set of satellites St

3: scores← ∅
4: for each satellite si,j ∈ S do
5: // Resource Prediction
6: b(i,j)← PREDICTBATTERY(i,j) Equation 17
7: u(i,j)← PREDICTCPU(i,j) Equation 20
8: y(i,j)← PREDICTMEMORY(i,j) Equation 23
9: // Energy Calculations

10: Ecomp ← COMPUTEECOMP(i,j) Equation 5
11: Ecomm ← COMPUTEECOMM(i,j) Equation 8
12: Etotal ← Ecomp + Ecomm

13: if b(i,j) > 0 then
14: possible rounds(i,j)← ROUNDS Equation 12
15: score(i,j)← SCORE Equation 13
16: scores.append((si,j , score(i,j)))
17: end if
18: end for
19: Sort scores by score(i,j) in descending order
20: St ← First m satellites from scores
21: return St =0

prediction functions continuously improve through feedback
loops that measure actual resource usage after each training
round, calculate prediction errors, incorporate new measure-
ments through sliding windows, and periodically retrain mod-
els and tune hyperparameters, ensuring the system adapts to
changing satellite conditions and maintains efficiency for the
selection process.

B. Clustering and Master Selection

Due to the rapid movement of satellites, their communica-
tion window with a specific GS is limited. Given the inter-
mittent yet predictable connectivity of satellites due to orbital
motion, it is crucial to consider these patterns to predict their
connectivity times with GS. To determine the optimal number
of satellites per cluster, we utilise the cluster determination
algorithm proposed in [15], which applies a reinforcement
learning (RL) approach using deep Q-learning and takes into
account the total number of satellites, communication range,
and master satellite count. The model is trained on a prede-
fined reward function to facilitate efficient cluster formation.
The RL agent performs a number of clustering operations,
such as satellite addition and removal, and cluster formation
and dissolution. Penalty mechanisms are triggered by invalid
clustering decisions, such as exceeding cluster capacity. The
model is trained on a predefined reward function to facilitate
efficient cluster formation.

In the cluster formation stage, master satellites are selected
from satellites that are scheduled to visit the GS immediately
after completing their cluster training. A satellite qualifies as a
master satellite candidate if its visiting time with the GS falls
within the window of training completion [15]. In Algorithm

Algorithm 3 Master Selection Algorithm
1: Input: Set of candidate master satellites Lcandidates

2: Output: Selected master satellite lbesti,j

3: lbesti,j ← null
4: best comm score← −∞
5: for all candidate li,j ∈ Lcandidates do
6: comm score← GETCOMMUQUALITY(li,j)
7: if comm score > best comm score then
8: best comm score← comm score
9: lbesti,j ← li,j

10: end if
11: end for
12: return lbesti,j =0

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value
Constellation Walker Delta (Starlink)
Number of LEO satellites 720
Number of orbits 36
Number of LEOs per Orbit 20
Inclination 70°
Altitude 570 km
Bandwidth of ISL/GS2S 2.5/1.25 GHz
System loss (h) 3 dB
Noise power (σ) 2.2× 10−16 W
Frequency 27 GHz
Gain to noise temperature ratio (G) 5 dB/K
Data rate 16 Mbps
Transmit power (p) 40 Watt
Total FL rounds 40
Local training epochs 30
Batch size 10

TABLE II
CLIENT SELECTION SCORING WEIGHTS

Parameter Weight
Battery efficiency (α) 0.6
CPU utilisation (β) 0.2
Memory usage (γ) 0.2

3 line 1, a set of candidate master satellites is chosen as a
master candidate based on their visiting patterns and ensuring
finishing cluster training time. In lines 5-9, to find the best
satellite among the candidates, the communication bandwidth
is scored, and the candidate with the best score is selected as a
master satellite. This ensures that the satellite with the highest
bandwidth is selected as the master, optimising transmission
efficiency. Following master satellite selection and cluster
formation, all satellites initiate local training and aggregation.
After that, master satellites send their updated parameters to
the GS for aggregation. The GS receives the updates and
broadcasts a new global model to satellites during their next
visits.

V. PERFORMANCE EVALUATION

Experiments across various models and datasets were per-
formed to demonstrate the performance of the proposed algo-
rithm. The model accuracy, energy consumption, and training
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time are the evaluation metrics in this work. We developed
the FedSCS algorithm in the Flower framework [1], com-
bined with the machine learning framework PyTorch for FL
implementation [23]. The Satellite Communications Toolbox
in MATLAB is employed to analyse and compute the visiting
patterns of LEO satellites relative to the GS.

A. Experimental Setup

A Walker-Delta constellation is considered, comprising 720
LEO satellites with an inclination of 70° and an altitude
of 570 km. The constellation is structured into 36 orbital
planes (OPs), each containing 20 satellites, with an inter-plane
spacing of 10° and an intra-plane satellite spacing of 18°.
Each satellite is assigned a unique identifier (ID) based on
its orbital plane and position, resulting in 720 distinct IDs. A
ground station is positioned in Canberra, Australia, at latitude
−35.40139 and longitude 148.98167. The ISL range varies
within {659, 1319, 1500, 1700} km, enabling a master satellite
to form a cluster with 2, 4, 6, or 10 neighbouring satellites. For
resource availability (CPU, memory, and battery), we consider
random values in [20%-40%] for each satellite, considering
that they have several other tasks to perform for their space
mission. To ensure a fair comparison, we use the same
parameters employed in previous studies [14] in Table I. Also,
Table II presents the client selection parameters, prioritising
energy efficiency with a higher weight.

Baselines: Our proposed approach is compared with sev-
eral existing approaches, including FedSyn [22], FedProx
[17], FELLO [3], and FedOrbit [15]. FedSyn represents the
traditional centralised FL approach, where local models are
transmitted to a central GS for aggregation. FedProx is a
decentralised FL framework designed to tackle heterogeneity
in FL networks. FELLO is a decentralised FL framework for
LEO satellites, where the GS selects a master LEO satellite as
the FL edge server. This edge server clusters satellites based
on optical ISLs and communication link quality. FedOrbit is
a hierarchical FL for LEO satellites, minimising GS depen-
dency through reinforcement learning-based clustering. The
setting utilises 40 satellites sampled from the constellation.
The satellites are clustered with RL with the formation (5-
7-3-3-5-7-3-7) where the numbers represent the size of each
cluster [15].

Datasets and Models: We used the MNIST and CIFAR-10
in the IID and non-IID data format. Additionally, we incor-
porate EuroSat [12], a real-world satellite dataset containing
27,000 images of 64×64 pixels. MNIST and CIFAR-10 are
trained using a deep convolutional neural network (CNN).
EuroSat is trained using the ResNet18 model, which is well-
suited for high-resolution satellite imagery classification.

B. Experimental Results

This section provides a detailed comparative analysis of
the experimental results, emphasising the performance of
FedSCS and the impact of the client selection algorithm on the
consumed energy reduction. Figure 2 shows the comparison of
the resource’s predicted and actual values over time (left: full
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Fig. 2. Resources Availability Prediction (Battery, CPU, Memory)

range, right: zoomed view). The predicted value for the battery
is approximately 3% higher than the actual ones, while the
predicted value for CPU and memory is 2.5%, 4% higher than
the actual, respectively. This reveals that we can predict the
resource availability with relatively high accuracy, which will
be the key factor in the proposed client selection algorithm.

As plotted in Figure 3 for MNIST dataset, FedSCS achieved
86% accuracy, outperforming FedOrbit by 3.61%, FELLO
by 10.26%, and FedProx by 8.86%. For CIFAR10 dataset,
Figure 4 shows that FedSCS achieved 85% accuracy and
FedOrbit 82%, and outperforms FELLO and FedProx by
10.39% and 11.84%, respectively. FedProx approach had
the lowest final accuracy and the slowest improvement rate.
FedSyn as a centralised approach, had the highest accuracy
among the baselines. When evaluated on real satellite non-
IID image dataset using ResNet18 model, FedSCS achieves
84% accuracy and demonstrates a strong convergence rate and
higher accuracy compared to FedOrbit, FELLO, and FedProx.
FedSCS surpassed 80% accuracy by round 12, whereas Fe-
dOrbit only reached 76%, reinforcing that FedSCS had a more
stable and efficient learning process as shown in Figure 5.

For energy consumption and training time, metrics are at a
consistent value of accuracy, which is stated as a comparable
accuracy value (Comp. Acc.). Figure 6 shows the energy
consumption and training time for the CNN model and MNIST
dataset at Comp. Acc. of 79%. FedSCS achieved the lowest
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Fig. 3. Accuracy for CNN-MNIST (IID)

power consumption in 2.5 hours training time, making it faster
than FedSyn by 86.98% and 16.67% faster than FedOrbit and
less by 6.76% of the consumed energy. Figure 7 shows the
consumed energy for the CNN model and the CIFAR10 dataset
and training time for Comp. Acc. of 77%. FedSCS completed
training time 17.95% faster than FedOrbit and 10.34% less
consumed energy as well. In Figure 8 the Comp. Acc. is set to
75% for the ResNet18 model and the EuroSat dataset. It shows
that FedSCS training time is 9.09% faster than FedOrbit,
46.81% faster than FELLO, and 62.83% faster than FedProx.
The consumed energy is 9.09% less power than FedOrbit,
39.2% less than FELLO, and 57.45% less than FedProx. This
is due to the utilisation of the energy efficient client selection
in satellites and the communication selection strategy for the
master satellite.

Table III shows the accuracy, training time and energy
consumption for MNIST and CIFAR10 in the non-IID setting
for FedSCS and FedOrbit. For MNIST, the proposed FedSCS
outperforms FedOrbit by 3.57% in accuracy and 30% reduced
training time. For the CIFAR10 dataset, FedSCS achieved 80%
accuracy while FedOrbit achieved 77% and the training time
was reduced by 23.08%. The energy consumption is reduced
by 39.7%, 36.3% for MNIST and CIFAR10, respectively. Fed-
SCS outperforms FedOrbit with a reduced energy consumption
by 6.67%, 10.34% for MNIST, CIFAR10 in the IID setting and
39.7% and 36.3% in the non-IID setting, respectively. This is
due to selecting sufficient clients that achieve fast convergence
and the master selection approach, showing great efficiency in
the non-IID setting.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an energy-efficient client se-
lection FL approach for LEO satellite constellations. Fed-
SCS introduces a resource-aware client selection strategy
that dynamically prioritises satellites based on their available
computational resources, ensuring the selection of the most
suitable clients. FedSCS incorporates a resource prediction
model and client selection algorithm to enhance training
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Fig. 4. Accuracy for CNN-CIFAR10 (IID)
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Fig. 6. CNN-MINST (Comp. Acc. 79%)

efficiency and minimise energy consumption. Experimental
results show that FedSCS surpasses existing centralised and
decentralised FL techniques by reducing training time and
energy consumption for both IID and non-IID datasets while
achieving a slight improvement in accuracy. Future work will
focus on optimising cluster formation to enhance efficiency
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TABLE III
PERFORMANCE COMPARISON FOR NON-IID DATASETS

FL Approaches Accuracy (%) Training Time (h) Energy (kW)
MNIST CIFAR10 MNIST CIFAR10 MNIST CIFAR10

FedSCS 84 80 5.6 10 5 7
FedOrbit 81 77 8 13 8.3 11
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Fig. 7. CNN-CIFAR10 (Comp. Acc. 77%)
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Fig. 8. ResNet18-EuroSat (Comp. Acc. 75%)

and further minimise energy consumption.
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