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Abstract
In the era of the Industrial Internet of Things (IIoT), the integration
of Artificial Intelligence (AI) and Machine Learning (ML) into in-
dustrial processes has significantly enhanced operational efficiency
and decision-making capabilities. However, the effectiveness of
AI-enabled IIoT systems heavily depends on the quality of the un-
derlying data. Ensuring data integrity, accuracy, and reliability in
IIoT is challenging due to the heterogeneous nature of data sources
and the dynamic operational conditions. Existing approaches of-
ten focus on individual data quality techniques, lacking a unified
and comprehensive framework. To address this need, we propose
Data Quality as a Service (DQaaS), a novel framework designed
to provide scalable and reusable data quality solutions as services
for AI-enabled IIoT applications. DQaaS encompasses a suite of
modular services for data monitoring and repair, all orchestrated
through a centralized platform. This framework leverages advanced
ML algorithms and state-of-the-art processing techniques to ensure
robust data quality management across the edge-cloud continuum.
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1 Introduction
The Industrial Internet of Things (IIoT) transforms industries by en-
hancing how products are manufactured, improved, and distributed.
Companies integrate Artificial Intelligence (AI) and Machine Learn-
ing (ML) into their operations to exploit the extensive data gen-
erated by IIoT systems. This integration boosts decision-making,
optimizes production lines, and enables predictive maintenance
by forecasting tool lifespan [5, 61]. However, the effectiveness of
AI-enabled IIoT systems is hindered by data quality and consistency
issues. Neglecting data quality leads to unstructured, untagged "dark
data" [10] and biases [1]. Addressing these challenges requires com-
prehensive data quality management techniques to improve and
maintain data quality in various IIoT scenarios [18, 23, 52, 53, 55].

Addressing data quality problems spans diverse research fields,
each offering various interpretations and solutions. In relational
databases, it involves data normalization [13], while in signal pro-
cessing, it addresses signal-to-noise ratios. Data scientists have
developed numerous techniques to enhance data quality before
applying ML pipelines. Despite the importance of data quality in
IIoT, improving it remains challenging due to two main reasons.
First, sensor measurements in IIoT are often corrupted or missing
due to factors like electromagnetic interference, packet loss, or
signal processing faults. Second, IIoT data travels along the edge-
cloud continuum, making it susceptible to various quality issues.
This journey includes data collection by sensors, processing by
programmable logic controllers (PLCs), transfer to edge devices via
industrial protocols [8, 43], and transmission to the cloud via API
protocols [16, 36, 59]. Consequently, IIoT systems must address er-
roneous values, missing values, noise, and data drift while ensuring
data continuity throughout the edge-cloud continuum.

Effective data quality management requires strategies for both
online (real-time) and offline (historical datasets in the cloud) con-
texts. This necessitates configurable data quality services. Our re-
search aims to develop independent, adaptable data quality services
to meet the evolving needs of AI-enabled IIoT systems.
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Extensive research has been conducted on data quality tech-
niques for IIoT systems [18], focusing on various aspects such as
data monitoring, cleaning, and repair. Notable contributions include
methods for repairing data using sensory substitution [49], address-
ing data corruption through computational dependencies [31], and
utilizing clustering techniques for outlier detection [11, 57]. Other
approaches employ noise filters [62] and sampling techniques [29]
to enhance data robustness, andML pipelines [22, 24] to identify and
validate process behavior patterns. Despite these advancements, ex-
isting solutions are often isolated and lack a unified framework that
coordinates these techniques as composable and reusable services.
Moreover, there is a significant gap in the design and implementa-
tion of data quality techniques that can operate seamlessly across
the edge-cloud continuum.

In this paper, we propose and implement Data Quality as a Ser-
vice (DQaaS), a novel framework offering data quality solutions
for AI-enabled IIoT applications. DQaaS addresses the complex
data quality challenges of IIoT by providing scalable, on-demand
services to ensure data integrity, accuracy, and reliability. It inte-
grates advanced ML techniques to deliver a comprehensive range
of services, from real-time anomaly detection to historical data
validation and repair, accessible via a unified cloud-based platform.
We explore both the theoretical foundations and practical imple-
mentations of DQaaS, demonstrating its effectiveness in improving
data quality management within DQaaS. The data quality tasks in
DQaaS are designed with modularity at their core, enabling the
creation of encapsulated functionalities that function as distinct
yet integrated services. These services can operate independently
or collaboratively, tailored to meet diverse user requirements.

The DQaaS framework currently offers five critical data quality
services, each designed to address specific data quality challenges
in AI-enabled IIoT applications. The Generic Data Monitoring Ser-
vice provides real-time evaluation of data integrity across various
industrial environments. The Machine-tool Condition Data Moni-
toring Service focuses on monitoring the health and performance
of machine tools, enhancing Overall Equipment Effectiveness (OEE)
through predictivemaintenance. TheAnomaly DetectionDataMon-
itoring Service leverages advanced models to identify point and
collective anomalies in manufacturing data, preventing unexpected
failures. The Generic Data Repair Service employsmachine learning
techniques to automatically repair erroneous sensor data, ensur-
ing the continuity and accuracy of data-driven predictions. Finally,
the Historical Data Quality Validation Service formalizes machine
tool concepts and utilizes a semi-supervised pattern recognition
approach for validation of historical manufacturing data.

2 Background: Data Quality for IIoT

Figure 1: Example data
quality problems.

Data quality is defined in
ISO/IEC 25012:2008 [25] as a de-
gree to which the characteristics
of data satisfy stated and im-
plied needs when used under spec-
ified conditions. Data quality
metrics are the measurements
by which you assess your data.
They benchmark how complete,

valid, accurate, timely, and consistent the data is and help differenti-
ate between high- and low-quality data. They can be obtained from
data quality dimensions, i.e., the measurement attributes of data,
which we can assess and improve. Data accuracy and completeness
are two data quality dimensions addressed by quality metrics. Data
completeness refers to the degree to which all parts of the data
are given with no missing information [60]; data accuracy is the
degree of similarity of a measured quantity to its actual value.

Data quality requirements describe the needs or conditions
that high-quality data should meet. They are checked on the input
data to compute the corresponding metrics. The data quality re-
quirement violation indicates a data quality problem/issue. Figure 1
shows some data quality problems on time-series data. Missing
data refers to cases when a variable or attribute has no value. Out-
liers are extreme values that deviate from other observations of
data. Duplicated records are two or more adjacent data points
in the same timestamp. A sudden rate of change refers to cases
where a variable changes unrealistically over a period of time.

Data quality management techniques (in short, data qual-
ity techniques) improve and maintain data quality across system
components. There are three types of data quality techniques:

• Data Monitoring: Data is monitored to check data quality
requirements for detecting quality issues such as outliers.

• Data Cleaning: It entails the removal of corrupt and un-
usable data, e.g., those affected by environmental noise or
extreme operating conditions such as high temperature.

• Data Repair: It restores data that has been lost, accidentally
deleted, corrupted, or made inaccessible, e.g., by using simu-
lation data or data from redundant sources (other sensors).
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Figure 2: Architecture for data quality systems [28, 50].

Data quality techniques can be online (real-time) and offline
(for large historical datasets). Karkouch et al. [28] adopt an archi-
tecture (see Figure 2) proposed by Sathe et al. [50] to depict the
distinction between online and offline techniques (IoT layers edge
and cloud are not explicit in the architecture).

3 Related Work
Data quality techniques involve various approaches, technologies,
and tools to detect and rectify data quality issues. While some lit-
erature groups data cleaning and repair together, we differentiate
between them due to their distinct treatments of these issues (as
discussed in Section 2). Data monitoring, which identifies qual-
ity issues, is a prerequisite and integral part of both data repair
and cleaning. Notably, existing data cleaning and repair methods
inherently support data monitoring.

Significant research has focused on developing data quality tech-
niques for IIoT data, including monitoring, cleaning, and repair [18].
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For instance, Russel et al. [49] propose repairing camera-sensed data
using raw data from ambient sensors through sensory substitution
to enhance robustness and dependability. Lin et al. [31] address data
corruption by replaying dependent computations in a distributed
IoT environment to fix degradation caused by hardware malfunc-
tions, software bugs, or network issues. Syafrudin et al. [57] and
Corrales et al. [11] use Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [14] for outlier detection. Yu et al. [62]
apply noise filters based on computation unit distances to elimi-
nate long- and short-duration noise. Kong et al. [29] use sampling
techniques to reduce noise in datasets used for state prediction in
machine tools. Johannes et al. [24] introduce an unsupervised ma-
chine learning pipeline, UDAVA, to identify and validate recurring
process behavior patterns in sensor data. While these methods ad-
dress specific data quality issues, they do not design and implement
data quality techniques as reusable services to meet the evolving
challenges of IIoT systems over time.

Despite extensive research, limited attention has been given to
developing a comprehensive solution that coordinates multiple data
quality techniques as services for IIoT data. Sen et al. [54] address
this gap with a decentralized edge-cloud AI pipeline architecture
supporting two ML-based data quality pipelines. This architecture
is an initial step toward a generic solution utilizing data quality
services. However, it does not introduce or implement composable
data quality services to meet the unique requirements of IIoT data.
To complement this architecture, Tverdal et al. [58] implement edge-
based data monitoring and repair as a service for IoT. However, this
edge-based service does not fully integrate with other data quality
services needed for comprehensive IIoT data management.

Distinct from the approaches given above, DQaaS presents a
unified and flexible framework for managing data quality in IIoT
systems. Unlike existing studies focusing on isolated techniques,
DQaaS provides a comprehensive suite of composable and reusable
services tailored to address the diverse and evolving data qual-
ity challenges in IIoT environments. Our framework encompasses
robust services for data monitoring, cleaning, and repair, all orches-
trated through a centralized platform. This orchestration ensures
seamless integration and coordination of data quality processes,
significantly enhancing overall data reliability and operational effi-
ciency. Furthermore, DQaaS is designed to support scalability and
adaptability, making it adept at managing the dynamic and complex
nature of IIoT systems over time.

4 DQaaS Approach
In this section, we introduce Data Quality as a Service (DQaaS),
a framework designed to provide data quality solutions as online
services tailored for IIoT applications. DQaaS offers reusable ser-
vices that simplify the complexities of traditional data reliability
procedures. Figure 3 illustrates the DQaaS architecture, which inte-
grates IIoT with data quality services via edge and cloud computing.
Built on cloud-native, services-based architecture principles [3],
DQaaS incorporates key design paradigms such as the API Gate-
way/Backend for Frontend (BFF) pattern, inspired by the reference
architecture of Microsoft.Net [37]. The architecture includes client
and cloud-based server layers, as well as IIoT and Edge layers, which
supply live data streams to the backend of the data quality services.
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Repair Service
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Figure 3: Cloud-based Data quality as a service architecture.

4.1 Client Layer
End-users can access DQaaS data quality services through various
client applications, e.g., web browsers, mobile apps, and desktop ap-
plications, via the API Gateway. These applications provide robust
user interfaces, including web-based dashboards, for monitoring
and managing data quality within IIoT systems. Web browsers of-
fer the most common access through standard web technologies,
enhancing user engagement and control. In addition, mobile and
desktop apps, including Single Page Applications (SPAs), connect
seamlessly to DQaaS, offering specialized functionalities and ex-
panding the accessibility and versatility of the data quality services.

The Quality Hallmark Blockchain in the Client layer en-
sures IIoT data traceability, trust, and security across industrial
and inter-organizational supply chains. Acting as a trusted node,
this blockchain-based system records, stores, and verifies data qual-
ity metrics, certifications, and transactions immutably. Leveraging
blockchain technology, it provides a transparent, tamper-proof
mechanism for maintaining trustworthy records of data quality
hallmarks (i.e., data quality metrics logged by running the DQaaS
services on the data) by the DQaaS framework. Access to the Quality
Hallmark Blockchain is optional for each tenant.

4.2 Cloud Layer
The Cloud layer enables end-users to access data quality services via
the Data Dashboard Web App, typically through web browsers (see
Figure 3). We do not cover other client apps in this paper. The Data
Dashboard Web App can be built with any modern web technology
(e.g., ASP.Net Core [7]) and interacts with data quality services
through APIs provided by the API Gateway, using access tokens
from the Identity and Access Management (IAM) service.

Figure 4 illustrates the interactions between clients and the cloud-
based server in the DQaaS framework, highlighting the flow of
requests and responses to ensure secure and efficient access to
data quality services. The end-user initiates a request from a web
browser, which is directed to the Web App and then forwarded to
the API Gateway. The API Gateway sends the request to the IAM
service for authentication, which verifies credentials and issues
access tokens. These tokens are validated by the Tenant Manager
to confirm the tenant’s subscription and authorization. The request
(along with tokens) is forwarded to the data quality services, which
query the Cloud-based Data Broker for the required data. The Data
Broker processes and returns the data to the data quality services,
which send the results back through the API Gateway to the Web
App and finally to the end-user. This sequence ensures secure, au-
thenticated access, enabling efficient IIoT datamanagement through
a robust cloud-centric framework.
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Figure 4: A simplified sequence diagram of client requests and the Cloud-based server responses.

Figure 5: A simplified sequence diagram of data flows from IIoT to Edge to Cloud.

The API Gateway is the entry point for clients to access DQaaS
services, managing interactions, rate limiting, analytics, and the
Data Quality Hallmark. It enhances security, performance, and
scalability by centralizing authentication and authorization with
the IAM service and aggregating API usage analytics. It adapts
and filters messages, optimizes performance by caching frequent
requests, and abstracts backend complexities, providing a simplified,
secure interface for clients. This approach leverages the cloud-based
software-as-a-service (SaaS) model, ensuring a robust and efficient
cloud service infrastructure.

The IAM service manages permissions and access control, en-
suring secure interactions within DQaaS. It handles authentication,
authorization, user management, access control, single sign-on,
identity management, and compliance reporting. Working with the
API Gateway andmicroservices, the service ensures secure and com-
pliant interactions with the system. Clients must authenticate via
the IAM Service as an OpenID Connect [42] or OAuth 2.0 Identity
provider [41] before accessing data quality services. This approach
uses bearer tokens for fine-grained access control, securing inter-
actions from web apps, SPAs, and mobile apps, and safeguarding
sensitive IIoT data throughout the edge-cloud continuum.

The Tenant Manager manages end-user subscriptions to back-
end data quality services, allowing each tenant to subscribe based
on their needs and payment. Together with the IAM service, the
Tenant Manager enables multi-tenancy on the DQaaS platform,

offering customized services for different tenants [39, 40, 56]. It en-
forces authorization and access control for end-users of each tenant
and manages service administration and monitoring at runtime.
Frequent interaction with the IAM service suggests that the Tenant
Manager could be a local component within IAM, but it is more
effective as a standalone microservice in the cloud. This standalone
implementation, accessible via the API Gateway, allows for runtime
scaling to enhance performance.

The Cloud layer’s backend includes the Cloud-based Data
Broker, which stores historical time-series data and supports live
streams for the online services. The broker enables two-way data
synchronization between the Edge, IIoT layers, and specialized data
quality services. DQaaS currently offers five data quality services:

• Generic Data Monitoring Service: This service offers a
generic solution for real-time data quality monitoring across
IIoT environments. It continuously evaluates incoming data
against predefined metrics like completeness, accuracy, and
consistency, identifying anomalies and errors to ensure data
integrity throughout the data lifecycle.

• Machine-tool Condition Data Monitoring Service: This
service monitors machine-tool health and performance in
real-timewithin industrial settings, enhancingOverall Equip-
ment Effectiveness (OEE) [12]. It operates in both online
and offline modes, supporting Condition-Based Maintenance
(CBM) by continuously assessing data to detect degradation
indicators and data quality anomalies.
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• Anomaly Detection Data Monitoring Service: This ser-
vice identifies point and collective anomalies in manufactur-
ing time-series data to prevent failures and downtime. Using
prediction-based and reconstruction-based models, it detects
anomalies through four methods: out-of-limit, proximity-
based, prediction-based, and reconstruction-based detection.
This enhances manufacturing reliability by anticipating and
addressing unusual data behaviors.

• Generic Data Repair Service: This service automates the
repair of erroneous sensor data to ensure continuity and ac-
curacy in AI-enabled IIoT applications. Using ML techniques,
it learns sensor correlations to predict missing values and
replace corrupted data. Integrated into an ML pipeline, it
leverages redundant sensor inputs to determine the most ac-
curate values, enhancing data-driven predictions’ reliability.

• Historical Data Quality Validation Service: This service
validates historical manufacturing data, especially for ma-
chine tools. It formalizes concepts and establishes business
rules for automated data analysis pipelines. Using a semi-
supervised Dynamic Time Warping (DTW) [35] approach, it
recognizes patterns with minimal labeled data, ensuring ac-
curate validation and enhancing the reliability of data-driven
insights in manufacturing.

Each service can validate industrial data and generate data qual-
ity hallmarks that can be shared via the Trusted Framework (Quality
Hallmark Blockchain) [26]. More specifically, each service can in-
clude a special rule called QualityHallmarkDoc, which supports
publishing the Quality Hallmark Document (QHD) to the Quality
Hallmark Blockchain. The QHD, provided in JSON format, contains
metadata and data quality metrics from various services. This QHD
sharing is optional and only for tenants with blockchain settings.

DQaaS uses Docker technology to streamline data quality ser-
vice distribution. Docker images package data quality rules and
their execution environment for easy, license-free creation and dis-
tribution. These images can be shared and version-controlled on
platforms like GitLab, enhancing accessibility and collaboration.
This approach ensures a secure, efficient environment and promotes
a shared ecosystem of tools and practices for diverse stakeholders.

4.3 Edge Layer
The Edge Layer, situated between the IIoT and Cloud Layers, pro-
cesses data near its source, enabling low-latency, optimized band-
width, and efficient management. It includes robust Edge-based
Data Brokers that can handle data profiling, cleaning, compression,
protocol translation, and preliminary analytics [58]. These brokers
can perform initial data quality checks before sending data to the
Cloud Layer for advanced processing.

4.4 IIoT Layer
The IIoT layer in the DQaaS architecture is the source of industrial
data, bridging physical and digital interactions. It includes smart
devices, sensors, and actuators embedded in industrial machin-
ery that monitor, collect, and relay operational data. The Gateway
connects IIoT devices to processing layers, performing data aggre-
gation, initial processing (e.g., compression), protocol translation,
and connectivity management. Although the Edge layer is optional,

Figure 6: Spindle torque sensor data monitoring and cor-
rection in an IIoT environment. The JSON body in Great
Expectations defines the expected data range for the sensor.
The middle graph shows the original time series data, with
erroneous measurements highlighted in grey due to envi-
ronmental interference. The bottom graph displays the time
series after erroneous data repair.

the Gateway can directly publish IIoT data to the Cloud layer via
the Cloud-based Data Broker, which supports historical data access
and online data streaming to data quality services, either directly or
through the Edge layer. Figure 5 illustrates the data flow sequence
from IIoT gateways through the Edge to the Cloud layer within
the DQaaS framework. The IIoT gateway publishes raw data to
the Edge Data Broker, which subscribes to and processes it. The
Edge Data Profiling Service generates error codes and identifies
correlated variables, and then the Edge Data Broker publishes this
enriched data. The Cloud Data Broker subscribes to and transfers
the enriched data to the Cloud Database. The Cloud Data Profiling
Service processes the data further, responding to data commands
from data quality services. These services query the Cloud Database,
which processes commands and returns results.

5 Generic Data Monitoring Service
The service provides metrics to assess and improve data quality in
IoT and CPS, ensuring data is fit for specific purposes. These met-
rics, aligned with data quality dimensions, help certify data sources.
Despite their extensive study, these metrics are underutilized in
IIoT, leading to the accumulation of dark data—unstructured, un-
tagged, and unanalyzed. Prompt computation and feedback of these
metrics can prevent data from becoming dark, enhance audibility,
and encourage acquiring high-quality data for ML/AI products.

In DQaaS, data quality metrics are implemented using the Great
Expectations (GE) library [20], a widely used Python library for data
validation, documentation, and profiling. GE allows us to define
Expectations—statements that describe verifiable data properties
like missing data, duplicates, and value ranges. These Expectations
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Figure 7: Deployment of the machine-tool condition data monitoring service.

evaluate data from various perspectives to ensure it meets quality
standards. The service includes two categories of data quality rules:

Standard Rules: Utilizing common Expectations from GE to ad-
dress typical data quality issues with mostly fixed input parameters,
such as chi-square test, existence check, valid DateTime, valid type,
Kolmogorov-Smirnov test, quantile ranges, and missing values.

Custom Rules: Developing domain-specific Expectations us-
ing GE templates to verify project-specific data. These rules allow
user-defined parameters, including correlation coefficient, existence
check, max value, value kurtosis, noise, skewness, standard devia-
tion, duplicate records, missing records, and six sigma deviation.

Figure 6 demonstrates the generic data monitoring service’s
functionality in a manufacturing environment, focusing on spindle
torque sensor data. The top panel displays a JSON configuration in
Great Expectations, setting the expected data range (-40 to 40). The
middle graph shows the original time series data with erroneous
measurements highlighted in grey, indicating deviations caused by
environmental interference.

6 Machine-tool Condition Data Monitoring
This service focuses on machine-tool condition monitoring [4],
enhancing Overall Equipment Effectiveness (OEE) [12] in manufac-
turing. It operates in both online and offline modes (see Section 2)
to prevent unexpected production interruptions due to equipment
failures, aligning with the zero-defect manufacturing paradigm [2].
Initial performance validation tests are conducted during setup
and are rarely repeated. A Condition-Based Maintenance (CBM)
strategy monitors machine condition and detects degradation in-
dicators timely [15]. Our service identifies data quality anomalies,
improving overall maintenance. It involves three stages:

Stage 1: Data Acquisition.Machine data is gathered through
built-in sensors and external systems, capturing variables like posi-
tion, speed, vibration, and temperature. Monitoring software on an
edge device collects data from the machine’s PLC at 50Hz during
CNC program execution. A rapid test known as Fingerprint [6]
assesses machine performance without production interference.

Stage 2: Fingerprint Test Cycle. A predefined sequence of
movements is executed to test machine axes and spindles quickly
and automatically, minimizing productivity impact. Data collected
is processed and uploaded to a cloud-based maintenance platform.
The test uses a specific CNC program customized for each machine
tool configuration and controller.

Stage 3: KPI Generation and Condition Monitoring. Ac-
quired data is post-processed to calculate Fingerprint KPIs using

a digital twin of the machine’s components. These KPIs diagnose
potential machine condition issues. Regular production data is also
processed to generate usage metrics, providing a comprehensive
assessment of the machine’s health.

The service utilizes eleven distinct metrics (completeness, com-
pleteness by observation, completeness by variables, time unique-
ness, range, consistency, typicality, moderation, timeliness, name,
and format), categorized into five data quality dimensions (com-
pleteness, uniqueness, accuracy, timeliness, and conformity), to
evaluate data quality [34]. These metrics produce values ranging
from 0 to 1, where 0 represents poor data quality and 1 represents
excellent quality. Figure 7 illustrates the deployment of the service
for both online and offline modes within DQaaS.

The process begins with the collection of operation and finger-
print data from machine tools, transmitted via an edge device to the
Cloud-based data broker and then to the Apache NiFi data pipeline.
Online quality checks are performed on fingerprint data within
the pipeline before storage in repositories, including relational (Mi-
crosoft SQL Server), time-series (InfluxDB), and file servers. The
data quality engine conducts offline quality checks on both oper-
ational and fingerprint data, with results stored in a PostgreSQL
database. These results are accessible through the API gateway,
which interacts with the IAM service for secure access. They are
presented to end-users via a web browser or other client apps.

Online monitoring starts when new fingerprint data arrives,
using two of eleven metrics (completeness and accuracy) in the
Apache NiFi data pipeline. Completeness ensures all expected Fin-
gerprint KPIs are present, while accuracy identifies outliers by
comparing each KPI to a predefined range (mean ± five times the
standard deviation). If either metric fails, the data is not stored, and
a notification prompts a retest. Offline monitoring occurs at sched-
uled intervals, using the data quality engine to analyze archived
data with all eleven metrics, generating a comprehensive quality
index through arithmetic or weighted averaging.

7 Anomaly Detection Data Monitoring Service
Manufacturing systems often face anomalies that lead to unex-
pected failures, increased downtime, diminished product quality,
and economic loss. The vast amount of time-series data generated
necessitates effective anomaly detection techniques to anticipate
and prevent breakdowns. This service uses prediction-based and
reconstruction-based models to identify point and collective anom-
alies in manufacturing datasets, defined as unusual behaviors at
specific time points or periods. The service focuses on detecting:
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Figure 8: Machine learning pipeline to produce models as an erroneous data repair service.

point anomalies (a single data point significantly deviates from
the norm) and collective anomalies (a sequence of data points is
anomalous, even if individual points appear normal). The service
uses four detection methods:

• Out-of-limit-based detection: Points are classified as anoma-
lous based on predefined rules.

• Proximity-based detection: Points are classified as anoma-
lous based on their unusual distance from other points.

• Prediction-based detection: Points are considered anoma-
lous if their actual value significantly deviates from predicted
values based on past data.

• Reconstruction-based detection: Points are considered
anomalous if their actual value deviates significantly from
reconstructed values after down-sampling and up-sampling.

State-of-the-art anomaly detection techniques for manufacturing
uses statistical prediction and shallow-learning techniques [27, 32].
However, recent work has shown that deep learning methods, such
as Generative Adversarial Networks (GANs) [17], outperform "tra-
ditional" statistical methods in handling non-linearity in complex
temporal correlations [45]. Based on this, the service includes:

Stage 1: Point Anomaly Detection. The first stage of the
service focuses on point anomaly detection for two main reasons.
First, a single anomaly in a time series can indicate a process defect,
making prompt detection crucial. Second, analyzing occurrence,
characteristics, and frequency of point anomalies can help predict
larger, collective anomalies. To detect point anomalies, the service
employs ARIMA [38], a baseline model well-suited for this purpose.

Stage 2: Collective Anomaly Detection. This stage utilizes
an ensemble approach with multiple models to increase precision
and recall. The models selected are (i) ARIMA [38] (a baseline, com-
putationally efficient forecasting model), (ii) LSTM with dynamic
threshold [21] (sets anomaly thresholds dynamically using histori-
cal error values), (iii) LSTM autoencoder [33] (detects anomalies by
reducing and reconstructing data dimensionality, suited for local
data patterns), (iv) Dense-based autoencoder [33] (computationally
cheaper, learns global data patterns, and reduces data dimensional-
ity), and (v) GAN (TadGAN) [9] (combines an LSTM-autoencoder
generator with an LSTM-based anomaly classifier).

8 Generic Data Repair Service
This service automates repairing erroneous sensor data, ensur-
ing the continuity and accuracy of data-driven predictions in AI-
enabled IIoT applications. Using ML techniques, it learns correla-
tions among sensors to predict missing values and replace corrupted

data. Integrated into an ML pipeline, it leverages inputs from redun-
dant sensors to determine the most representative values for data
repair, enhancing the reliability of data used in IIoT applications.

Figure 8 presents the ML pipeline for producing and deploying
ML models as an erroneous data repair service. The pipeline trains
the ML model 𝑓𝜃 (𝑋,𝑌 ), optimizing parameters 𝜃 to find the most
accurate predictions. Input includes multivariate time series data
𝑇𝑋 from candidate sensors 𝐶 and univariate time series data 𝑇𝑌
from a target sensor 𝑠𝑖 . The model learns the relationship between
𝑇𝑋 and 𝑇𝑌 to predict target sensor values. High-quality training
data, characterized by completeness, accuracy, timeliness, and va-
lidity, is essential for effective model training. These datasets are
ideally fault-free and obtained from successful production cycles.
The learning process involves selecting model parameters 𝜃 , such
as the model type (DNN/FCNN, CNN, LSTM [19]), window sizes,
and data split percentages for training and evaluation. The pipeline
input goes through three stages:

Stage 1: Data pre-processing. The input data undergoes several
processing stages for neural network use: data profiling, cleaning,
feature engineering, data scaling, and splitting into training/test sets
and sub-sequences. Data profiling computes the maximum infor-
mation coefficient [48] and Pearson’s correlation coefficient [51] to
identify sensor correlations. Statistical metrics highlight zeros or
missing values, guiding data cleaning to remove constant or null
columns. Feature engineering extracts statistical properties from
raw data, ensuring noise invariance and efficient classification. The
data is then split into training and test sets, with the training set
used for model training and hyper-parameter tuning, and the test
set kept isolated for unbiased evaluation.

Datasets with varying sensor measurements are scaled [30] for
comparable influence during training. Both training (including
validation) and test datasets are restructured into input and output
sub-sequences based on a specified window size, as predictions
depend on time-varying observations from input sensors and the
desired window of output values.

Stage 2: Training ML model. Input and output sub-sequences,
tailored to the desired input and output window sizes determined
in Stage 1, are used to train the ML model, allowing flexibility in
learning parameters and model types, including DNN/FCNN, CNN,
and LSTM. Before training, 20% of the training data is set aside for
validation. During training, the pipeline monitors prediction error
on the validation set, stopping if no improvement occurs to prevent
overfitting. The trained model is then saved for evaluation.

Stage 3: Evaluating model performance. The pipeline uses
the test dataset to evaluate the model’s performance and detect any
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Figure 9: Overview of the historical data validation service.

bias from hyper-parameter tuning in Stage 2. By comparing the
model’s output with ground truth values, we assess its prediction
accuracy. The pipeline generates visual plots of predictions and
employs metrics such as Mean Squared Error (MSE), R2 score, and
Mean Absolute Percentage Error (MAPE) to quantify performance.

TheMLmodel becomes a service via the API Gateway in Figure 3.
The API processes time series data from input sensors and returns
target sensor values with timestamps. Since the model is trained
on scaled, feature-engineered data, it cannot directly use raw input
sequences. Therefore, the feature engineering steps, scaler, and
model, along with necessary ML libraries (e.g., Scikit-learn [46] and
Pandas [44]), are encapsulated in a Docker container for inference.

The generic data repair serviceworks seamlesslywith the generic
data monitoring service to ensure data integrity in IIoT environ-
ments. As shown in Figure 6, the monitoring service identifies er-
roneous measurements that deviate from acceptable ranges. Upon
detection, the repair service corrects the faulty data. Together, these
services maintain accurate and reliable sensor data, essential for
effective data-driven decision-making in IIoT. The bottom graph in
Figure 6 illustrates the corrected data (in green) within the expected
range, demonstrating the effectiveness of this collaboration.

9 Historical Data Validation Service
In numerical machining, computational programs perform repet-
itive tasks in cyclical patterns, with each component undergoing
the same sequence of operations. These include sub-patterns, like
varying spindle speeds, reflecting machine acceleration or decel-
eration. Analyzing these patterns provides a robust assessment of
machine dynamics under consistent conditions. The service uses
supervised ML to identify predefined patterns, requiring a labeled
training set for classification.

Figure 9 illustrates the service for validating historical data, lever-
aging machining industry expertise. The approach has two primary
workflows. Offline Workflow depicted in the upper part of Fig-
ure 9 utilizes historical data to create a contextualized machin-
ing model. This stage integrates AI algorithms and an automated
pipeline based on a knowledge base that includes physical laws
and production rules. Online Workflow given in the lower part
of Figure 9 applies the offline-constructed model to real-time data
to assess the quality metrics of historical data.

In offline workflow, historical data is clustered based on tool num-
bers, generating program references that categorize the operation
sequences (Sequential Clustering on Tool Number). A unique refer-
ence for each cluster is constructed using an averaging algorithm to

represent the average pattern for a set of reference sequences. The
Dynamic Time Warping Barycenter Averaging (DBA) method [47]
refines an initial sequence to minimize its squared DTW distance,
reducing inertia until all barycenters are calculated. Machine ac-
tions are labeled using supervised ML (Label Machine Actions),
identifying different states such as X-Y Moving, Z Moving, Machin-
ing, and Tool Change. By using labeled data, the service learns
contextualized models and statistics that describe typical machine
behavior (Learn Contextualized Models/Statistics). Errors and resid-
uals are calculated to refine the models, ensuring accuracy (Models
Error, Residues).

In online workflow, live batch data is structured and variable def-
initions are established, setting the stage for real-time analysis (Ma-
chine Structure and Variables Definition). An automated pipeline
is generated to process live data, integrating knowledge from the
offline workflow (Automatic Pipeline Generation). The pipeline
recognizes patterns in the live data based on established program
references (Program Pattern Recognition). It labels the identified
contexts in real-time, enabling immediate classification of machine
actions (Label Contexts). It continuously evaluates the models and
statistics against the live data, ensuring the accuracy and relevance
of the validation process (Evaluation of Models/Statistics).

10 Conclusions
In this paper, we have introduced Data Quality as a Service (DQaaS),
a novel framework designed to address the diverse and evolving
data quality challenges inherent in AI-enabled IIoT environments.
DQaaS integrates modular, reusable data quality services, leverag-
ing advancedmachine learning (ML) algorithms and state-of-the-art
processing techniques. This comprehensive framework ensures ro-
bust data quality management across the edge-cloud continuum,
enabling secure, efficient, and reliable data handling from IIoT de-
vices to cloud-based services.
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