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Abstract—Due to the high scalability, infrastructure manage-
ment, and pay-per-use pricing model, serverless computing has
been adopted in a wide range of applications such as real-
time data processing, IoT, and AI-related workflows. However,
deploying serverless functions across dynamic and heterogeneous
environments such as the 3D (Edge-Cloud-Space) Continuum
introduces additional complexity. Each layer of the 3D Continuum
shows different performance capabilities and costs according
to workload characteristics. Cloud services alone often show
significant differences in performance and pricing for similar
functions, further complicating cost management. Additionally,
serverless workflows consist of functions with diverse character-
istics, requiring a granular understanding of performance and
cost trade-offs across different infrastructure layers to be able
to address them individually. In this paper, we present Cosmos,
a cost- and a performance-cost-tradeoff model for serverless
workflows that identifies key factors that affect cost changes
across different workloads and cloud providers. We present a
case study analyzing the main drivers that influence the costs of
serverless workflows. We demonstrate how to classify the costs of
serverless workflows in leading cloud providers AWS and GCP.
Our results show that for data-intensive functions, data transfer
and state management costs contribute to up to 75% of the costs
in AWS and 52% in GCP. For compute-intensive functions such
as AI inference, the cost results show that BaaS services are the
largest cost driver, reaching up to 83% in AWS and 97% in GCP.

Index Terms—serverless, cost, edge, space, cloud, continuum

I. INTRODUCTION

Serverless computing offers high scalability and automatic in-

frastructure management with fine-grained resource utilization

in a pay-per-use business model [1, 2, 3]. Due to its advantages,

serverless computing has been widely adopted in different

applications such as real-time data processing, IoT, and AI

inference [4, 5, 6]. Small pieces of code are wrapped in short-

lived functions managed by the platform. Typically, serverless

functions are event-driven and stateless, which means they

leverage external services, called Backend-as-a-Service (BaaS),

to manage state and additional features, such as request routing,

AI inference, and user authentication. Although functions are

billed only for the execution time, the dependence on BaaS

services leads to additional costs [7, 8, 9, 10].

Recently, the deployment of thousands of Low Earth Orbit

(LEO) satellites with inter-satellite links (ISL) allows extending

serverless computing beyond the edge and cloud into space,

forming a 3D Compute Continuum. This continuum allows

for dynamic and efficient execution of serverless workflows

that leverage the advantages of each of its three layers: Edge

computing for low-latency processing near data sources, the

cloud for scalable, high-capacity computing, and LEO satellites

for in-orbit processing and low-latency communication to

reduce reliance on Earth-based data transfer [11, 12].

However, reliably predicting the costs of serverless work-

flows remains challenging. Cloud providers impose complex

pricing models for different services, while edge and space

layers of the 3D Continuum add further complexities, such as

limited resources and energy constraints [13, 14]. Furthermore,

functions in a workflow may vary from compute-intensive to

data-intensive tasks, each with distinct resource and perfor-

mance demands [13, 15]. Therefore, it is essential to model

the costs of each function in a workflow to allow for finding

an appropriate performance-cost tradeoff.

Common approaches for serverless cost estimation include:

(a) Predictions [16, 17, 18] use models, such as ML and math

models to estimate costs based on historical execution data.

This enables the estimation and analysis of costs without

executing or even deploying a workflow. However, these

high-level predictions often fail to provide detailed cost

breakdowns or to identify the main drivers of higher expenses.

(b) Simulations [19, 20, 21] enable users to explore how costs

behave under different parameter configurations. They offer

valuable insights into performance and expenses across various

workload patterns, highlighting important trade-offs. However,

existing simulation tools often lack fine-grained parameters to

identify which aspects contribute to higher costs.

Since current cost models are not detailed enough for precise

performance-cost tradeoff decisions, users often err on the side

of caution and incur higher costs to ensure performance. To

address this gap, we present a classification of serverless costs,

focusing on isolating and identifying the main cost drivers

of workflows. The Cosmos cost model enables the building

of intelligent frameworks to optimize serverless costs and

maximize performance. Our main contributions include:

• Cosmos: A cost and a performance-cost tradeoff model for
serverless workflows that incorporates the heterogeneity

and dynamic characteristics of the 3D Continuum. Cosmos

isolates the main cost drivers while accounting for their

interdependencies, providing an understanding of how

different factors impact execution and cost, e.g., resource
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constraints, workload characteristics, communication over-

head, and dynamic pricing.

• A cost taxonomy that classifies the main cost drivers,

enabling their identification among invocation, compute,

data transfer, state management, and BaaS. This provides

insights into specific cost drivers for serverless workflows

across the different layers of the 3D Continuum.

• A case study on different commercial cloud and edge
providers, including AWS x86, AWS ARM, AWS

Lambda@Edge, and GCP. We analyze the primary cost

drivers associated with each platform. Since executing

experiments in space is currently impractical, we use cloud

and edge experiments to systematically evaluate each cost

driver and extrapolate the insights to the 3D Continuum.

Our experiments show that data transfer and state manage-

ment costs account for 75% of AWS costs and 52% of GCP

costs for IO-intensive workloads. On the other hand, BaaS

costs are the largest in compute-intensive functions, reaching

up to 83% on AWS and 97% on GCP. Our performance-cost

model highlights the options with the best tradeoff.

II. ILLUSTRATIVE SCENARIO & RESEARCH QUESTIONS

A. Illustrative Scenario

Fig. 1 shows an illustrative scenario, where the 3D Contin-

uum enables a scalable serverless workflow for deforestation

detection in remote areas, inspired by the DETER program

in Brazil [22]. Drones collect environmental data, such as

temperature, CO2 levels, and high-resolution images. They

transmit data to LEO satellites, which combine the edge-

collected data with Earth observation (EO) imagery in a

preprocessing step directly in orbit. Data volume reduction

in space is more efficient than downlinking raw EO satellite

data (1,5 TB per day [23, 24]) to Earth over a radio connection

with an average speed of 300 Mbps [25]. ISLs do not suffer

from interference from the Earth’s atmosphere and can offer

bandwidths up to 100 Gbps [26, 27]. Hence, the transfer

time from EO satellites is reduced. The preprocessed data

is downlinked to the cloud for performing deforestation pattern

detection with compute-intensive ML models. By properly

distributing tasks across the 3D Continuum, data can be pre-

processed closer to the source, such that compute-intensive AI

inference tasks in the cloud receive their inputs faster, resulting

in an overall reduction in end-to-end execution time.

Optimizing data processing across all layers of the 3D Con-

tinuum is crucial to maximizing performance without depleting

resource-constrained devices such as edge devices and LEO

satellites. This requires identifying the performance and cost

factors within each layer to address specific limitations and

enable the 3D Continuum to process the serverless workflow

effectively. By understanding these factors, frameworks can

dynamically allocate workloads in the most suitable locations

to minimize costs while maximizing performance on resource-

limited devices and reducing overall execution time.
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Fig. 1: Deforestation detection scenario with on-ground and in-orbit processing
with serverless for the 3D Continuum.

B. Research Questions

We identify the following research questions in optimizing

and classifying the costs across the 3D Continuum.

RQ-1: How can serverless workflows in the 3D Continuum
be optimized according to their workload characteristics?

Optimizing serverless workflows across the 3D Continuum

is challenging due to the varied characteristics of each infras-

tructure layer. Edge devices have limited computational power

but provide low latency. Cloud services offer high scalability,

but have higher latency and dynamic pricing, which can impact

cost-sensitive workflows. LEO satellites provide low-latency

network connections around the globe, but they have limited

computational resources, and their power supply and onboard

heat generation depend on their current position relative to the

sun [11, 12, 28]. To optimize serverless workflows, we need

to identify the workload requirements and associated costs for

functions, especially when workloads have different needs for

computing, resource usage, data transfer, and BaaS services.

RQ-2: How can cost models accurately capture and predict
serverless execution costs for heterogeneous environments?

Accurate prediction of serverless costs across diverse in-

frastructure layers requires accounting for the different char-

acteristics, such as execution time, pricing, and operational

constraints. It is essential to identify and integrate cost drivers

from the dynamic characteristics of workload and infrastructure

into a unified cost model. State-of-the-art serverless cost

models [20, 29] do not provide fine-grained cost drivers such as

fixed and dynamic prices to model the total cost of serverless

functions. Failing to identify and integrate the cost drivers of

dynamic environments, such as the 3D Continuum, can lead

to inaccurate cost estimates, resulting in inefficient resource

allocation, reduced performance, and increased expenses.

RQ-3: How to evaluate and benchmark cost drivers for
serverless functions in the heterogeneous 3D Continuum?
Validating cost models and workloads for serverless functions

requires benchmarking across different infrastructures [18, 30].
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However, replicating serverless workflows across edge, cloud,

and space is challenging, mainly due to cross-layer interactions

such as edge-to-cloud or cloud-to-space data transfers, compli-

cating performance and cost evaluations. Therefore, isolating

the impact of specific cost drivers in such heterogeneous

environments is complex and expensive.

III. SERVERLESS MAIN COST DRIVERS IN THE 3D

CONTINUUM AND COSMOS COST AND

PERFORMANCE-COST TRADEOFF MODEL

The serverless computing pricing model allows serverless

functions to be billed only for execution time, avoiding costs

with idle computing resources. Typically, a serverless workflow

(Fig. 2) is composed of multiple functions distributed across

the 3D Continuum that generate costs across several distinct

factors. Each cost driver represents a specific characteristic

of the task executed and services consumed during serverless

workflow execution.

A. Serverless Main Cost Drivers in the 3D Continuum

Fig. 3 presents a taxonomy of the main cost drivers associated

with serverless workflows, highlighting the focus of this analy-

sis: Invocation, Compute, Data Transfer, and State Management.

The main cost drivers are directly tied to the execution and

performance of serverless functions, representing the most

variable and impactful cost components in typical serverless

workflows. Unlike some fixed costs, such as subscriptions and

provisioned resources, which remain constant regardless of

usage, the underlined drivers exhibit cost fluctuations based on

function activity, data flows, and resource consumption.

a) Invocation: Invocation is the cost incurred each time

a serverless function is triggered. This cost is calculated on a

per-request basis and remains constant, regardless of the size of

the request payload or the execution time of the function. The

number of invocations or requests can influence the serverless

platform’s decision on scaling the function up or down.

b) Compute: Compute costs are determined by the

execution time of the function and the allocated computational

resources. It includes pricing based on the execution time

in seconds and the memory allocated to the function, often

represented in GB-seconds. The cost is directly proportional

to the intensity of computation and the duration for which

resources are consumed during each invocation.

c) State Management: Serverless functions are by design

stateless, which means they leverage external services to store

and manage state. As shown in Fig. 3, State Management is also

a BaaS. However, as detailed in Section V, state management

constitutes a significant portion of the overall function cost.

It involves the persistence and handling of required data

for executing serverless functions. These costs arise from

storage retention, which may be fixed (e.g., monthly storage)

or dynamic (e.g., per-operation costs). Typically, serverless

functions leverage many state management services, such as

object storage, key-value store (KVS), message brokers, and

databases.
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Fig. 2: Simplified serverless workflow for deforestation with main cost drivers
along and workload characteristics of each function.

d) Data Transfer: Data transfer refers to the data move-

ment between serverless functions and external systems. This

includes both inbound and outbound data traffic, which may

involve transferring data among serverless functions, external

databases, and clients. Typically, the pricing model for data

transfer is based on the volume of data transferred, measured in

gigabytes (GB), and the network path used, such as intra-region

and inter-region transfers.

e) BaaS: BaaS costs refer to the charges associated

with additional services that support serverless functions

and workflows. These services include managed APIs, event

gateways, data processing frameworks (such as Glue DPU),

and AI platforms such as AWS SageMaker and Vertex AI.

The costs for these additional services can be divided into two

categories: fixed costs, associated with hourly or monthly fees

for service availability, and dynamic costs, which change based

on the number of requests, the amount of data processed, or

specific operations performed.

B. Cosmos Cost Model

The total cost of a serverless workflow is represented as

the sum of each cost driver: invocation, computation, state

management, data transfer, and BaaS [10, 30, 31]. Cosmos

proposes to isolate the main cost drivers of serverless workflows

to better understand their impact, even though these costs are

interconnected. For example, while data transfer costs can

affect execution time for large inputs, our model distinguishes

between these factors to determine whether variations in

compute time are due to the complexity of the workload or

the overhead related to data movement.

a) Function Invocation Cost: The invocation cost C inv

for function i accounts for the fixed price incurred for each

request handled by the function, where ni is the number of

requests handled by a function i, and pinv,i, the price per

invocation for the function i. Thus, the invocation cost can be

expressed as:

C inv
i = ni · pinv,i (1)
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Fig. 3: Serverless workflow costs drivers, highlighting key cost drivers:
Invocation, Compute, Data Transfer, and State Management (partial view).

b) Compute Cost: The compute cost C exec for function

i depends on the execution time and computational resources

consumed, where ni is the number of requests received by

function i, ti, the compute time per request, and pexec,i, the

price per GB-second for execution. The data transfer for each

request is calculated in Eq. (4). Thus, the compute cost for a

specific compute duration can be expressed as:

C exec
i = ni · ti · pexec,i (2)

c) State Management Costs: The state management cost

C state for function i relates to additional services to store

the function state such as storage systems. Typically, state

management for each function i includes di, the amount of

data stored (typically in GB), pstate fixed,i, the price per GB of

fixed storage costs in a certain amount of time (e.g., monthly

charges). Therefore, the storage cost can be expressed as:

C state
i = di · pstate fixed,i (3)

d) Data Transfer Cost: The data transfer cost C transfer for

a function accounts for the cost of transferring data both into

and out of the function. It depends on the number of requests

ni, handled by function i, rin,i and rout,i, the total input and

output data size transferred per request, respectively, and pt in,i

and pt out,i, the respective prices per GB for input and output

data transfer. The total data transfer cost can be expressed as:

C transfer
i = ni · (rin,i · pt in,i + rout,i · pt out,i) (4)

e) BaaS Costs: The BaaS cost Cbaas for each function

i includes tfixed,i, the duration of fixed-cost services; pfixed,i,

the price per unit time for fixed costs; ni, the number of

requests handled; ri, the data processed per request (in GB);

and pdynamic,i, the price per unit for dynamically priced services.

Therefore, the BaaS cost can be expressed as:

C baas
i = tfixed,i · pfixed,i + ni · ri · pdynamic,i (5)

f) Total Compute Layer-Specific Cost: Different layers

might introduce different pricing models. For instance, LEO-

based processing introduces unique computation costs for

satellites, due to their high launch costs. Therefore, the total cost

Ci,L of a workflow aggregates the invocation, compute, state,

data transfer, and BaaS costs for all functions in the workflow

across every layer of the 3D Continuum. It is expressed as the

sum of individual costs for all functions i in F , executed in

layer L ∈ {e, c, s}, where e edge, c cloud, and s space:

Ci,L =C inv
i,L + C exec

i,L + C state
i,L + C transfer

i,L + C baas
i,L (6)

C. Cosmos Performance-Cost Trade-off Model

Optimizing serverless workflow execution in the 3D Com-

pute Continuum requires balancing two competing objectives:

minimizing costs and minimizing execution time. Processing

functions closer to the data source (e.g., edge or space) reduces

execution time but incurs higher costs, while cloud resources

are cost-effective but introduce latency. Therefore, we define

an optimization model that dynamically determines function

execution while respecting a given budget and latency SLO

constraints.

We define the total execution time of function i on layer L as

Ti,L Our goal is to minimize both total cost and total execution

time, where α and β are weighting factors that dynamically

adjust the relative importance of cost and execution time. Our

performance-cost model can be defined as:

min
∑
i∈F

∑
L

(
αCi,L + βTi,L

)

s.t.
∑
i∈F

∑
L

Ci,L ≤ B, (Budget constraint)

∑
i∈F

∑
L

Ti,L ≤ Lmax, (Latency SLO constraint)

(7)

Instead of manually selecting α and β, we employ a

Pareto front approach [32, 33] to dynamically balance cost and

execution time. We solve two separate optimization problems

to determine the best-case scenarios for cost and execution

time. We first minimize cost without considering execution

time. Let the cost minimization from this be C∗:

C∗ = min
∑
i∈F

∑
L

Ci,L ⇒ α =
1

C∗ (8)

Next, we minimize execution time and let this minimization

be T ∗:

T ∗ = min
∑
i∈F

∑
L

Ti,L ⇒ β =
1

T ∗ (9)

Cosmos performance-cost model trade-off ensures an optimal

balance in which cost and performance are equally prioritized

by dynamically adjusting weighting α and β based on the best

achievable budget and latency SLOs, making it well-suited for

optimizing serverless workflows in 3D Compute Continuum.
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IV. CASE STUDY IMPLEMENTATION

We implemented a simplified serverless workflow as de-

scribed in Section II-A. We identified the cost drivers using

AWS (x86, ARM, and Lambda@Edge) and GCP, which offer

detailed billing metrics and in-depth insights. Our case study

has three serverless functions: data retrieval, data processing,

and AI inference. Each function is implemented in Python with

the required BaaS services to emulate real-world serverless

workflows and measure their cost drivers. Our case study

implementation is published as an open-source framework part

of the Polaris SLO Cloud project and available on Github1.

a) Data Retrieval: We use AWS Lambda for compute,

API Gateway for HTTP requests, and retrieve data from

DynamoDB or S3. In GCP, we use Cloud Functions to interact

with Firestore for queries and Cloud Storage for retrieval,

responding directly to HTTP requests.

b) Data Processing: In AWS, we utilize Lambda for com-

puting, API Gateway for request handling, and AWS Glue to

execute ETL tasks, with data written to S3 or DynamoDB. GCP

implements Cloud Functions for orchestration and Dataflow

for ETL processing, leveraging its pay-as-you-go model for

CPU, memory, and data transfer.

c) AI Inference: We use AWS Lambda for preprocessing,

API Gateway for request handling, and SageMaker Serverless

for inference, while in GCP, Cloud Functions route requests to

Vertex AI for model execution. Invocation, execution, storage,

and data transfer costs are logged via AWS CloudWatch and

GCP Cloud Monitoring to validate our cost model.

V. EVALUATION

To validate our cost model, we implement and evaluate

a serverless workflow containing typical tasks in image

processing as described in our illustrative scenario in Fig. 1.

We executed the implemented workflow in two major leading

cloud serverless platforms, AWS Lambda [34] and GCP Google

Cloud Functions (GCF) [35].

a) Metrics: Performance-Cost Trade-off shows the trade-

offs between lower latency and lower costs. Latency shows the

mean execution time for each function from the HTTP client.

Cost evaluates the financial costs of the functions by analyzing

function invocation, execution costs, and data transfers, as

well as the costs associated with BaaS services. The costs are

calculated in USD per million requests.

b) Baselines: In our experiments, we validate our cost

model and compare the designed metrics for our serverless

functions between two leading cloud providers, AWS and GCP.

A. Experimental Setup

We executed the workflow presented in Fig. 2 using

services from AWS and GCP. For each function, we se-

lected similar services, such as Cloud Storage and AWS

S3. We deployed AWS functions with 128MB RAM in the

eu-central-1 (Frankfurt) region, and GCP functions

1https://github.com/polaris-slo-cloud/cosmos
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Fig. 5: End-to-end latency for serverless workflows for AWS(x86) and GCP

in the europe-west3-a (Frankfurt) region. We exe-

cuted HTTP requests using the Postman REST client on a

MacBook Pro 2020 with an i7 processor. To ensure consistency,

for each experiment presented, we performed the tests five

times sequentially and at similar times for both providers and

calculated the mean results to analyze performance and costs

under varying workload scenarios.

B. Performance-Cost Trade-off Results

Fig. 4 depicts the trade-off between latency and cost for

different layers and platforms in the 3D continuum, including

AWS (x86, ARM, Lambda@Edge), GCP, and a hypothetical

LEO. To the best of our knowledge, there is no existing pay-

per-use pricing model for LEO computing yet; therefore, we

assume that LEO execution price of 49USD for 1M requests

per ms executed based on [36], while achieving lower latency

than L@E [26, 27], and L@E offers nearly 2x lower latency

over AWS Lambda [37]. Further, to better understand the

trade-offs and capture layer-specific impact, we assume that

functions run entirely on a single layer, each offering a similar

resource capacity. In Fig. 4, the dashed red line represents the

optimal cost-latency trade-off. The points below are infeasible,

as no deployment can achieve both lower cost and latency,

illustrated by the utopia point, which represents the lowest cost

and latency but is unreachable. The points above the optimal

line are feasible but always involve trade-offs of either higher

cost or latency. Inference (x86, ARM, and GCP) functions do

not appear on the optimal line due to their high costs, which

are driven by BaaS costs, making them less cost-effective

compared to Data Retrieval and Data Processing. Although
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TABLE I: Detailed cost comparison across serverless functions for AWS (x86,
ARM, Lambda@Edge (L@E)) and GCP in USD for 1M requests.

Workflow Component AWS (x86) AWS (ARM) L@E GCP Cost Unit

Data Function Invocation 0.20 0.20 0.60 0.40 1M requests
Retrieval Function Execution 0.213 0.1667 0.6251 0.2304 GB-second

API Gateway 1.06 1.06 1.06 - 1M requests
DynamoDB Reads 0.1345 0.1345 0.1345 - 1M requests
DynamoDB Storage 0.269 0.269 0.269 - GB-month
Firestore Reads - - - 0.046 1M requests
Firestore Storage - - - 0.231 GB-month
Total DynamoDB/Firestore 0.4035 0.4035 0.4035 0.277 Read/Store
AWS S3 Retrieval 0.43 0.43 0.43 - 1M requests
AWS S3 Storage 0.0245 0.0245 0.0245 - GB-month
Cloud Storage Retrieval - - - 0.4 1M requests
Cloud Storage - - - 0.025 GB-month
Total AWS S3/Cloud Storage 0.4545 0.4545 0.4545 0.425 Read/Store
Total 2.331 2.2847 3.1431 1.3324 -

Data Function Invocation 0.20 0.20 0.60 0.40 1M requests
Processing Function Execution 0.213 0.1667 0.6251 0.276 GB-second

API Gateway 1.06 1.06 1.06 - 1M requests
DynamoDB Reads 0.1345 0.1345 0.1345 - 1M requests
DynamoDB Storage 0.269 0.269 0.269 - GB-month
Firestore Reads - - - 0.046 1M requests
Firestore Storage - - - 0.231 GB-month
Total DynamoDB/Firestore 0.4035 0.4035 0.4035 0.277 Read/Store
AWS S3 Retrieval 0.43 0.43 0.43 - 1M requests
AWS S3 Storage 0.0245 0.0245 0.0245 - GB-month
Cloud Storage Retrieval - - - 0.4 1M requests
Cloud Storage - - - 0.025 GB-month
Total AWS S3/Cloud Storage 0.4545 0.4545 0.4545 0.425 Read/Store
Glue DPU (2-hour ETL) 0.88 0.88 0.88 - Processing
Dataflow CPU - - - 0.07325 CPU-hour
Dataflow Memory - - - 0.00465 GB-hour
Dataflow Processed Data - - - 0.01439 GB processed
Total ETL Costs 0.88 0.88 0.88 0.09229 DPU/Dataflow
Total 3.211 3.1647 4.0031 1.47029 -

AI Function Invocation 0.20 0.20 0.60 0.40 1M requests
Inference Function Execution 0.213 0.1667 0.6251 0.2304 GB-second

API Gateway 1.06 1.06 1.06 - 1M requests
DynamoDB Reads 0.1345 0.1345 0.1345 - 1M requests
DynamoDB Storage 0.269 0.269 0.269 - GB-month
Firestore Reads - - - 0.046 1M requests
Firestore Storage - - - 0.231 GB-month
Total DynamoDB/Firestore 0.4035 0.4035 0.4035 0.277 Read/Store
AWS S3 Retrieval 0.43 0.43 0.43 - 1M requests
AWS S3 Storage 0.0245 0.0245 0.0245 - GB-month
Cloud Storage Retrieval - - - 0.4 1M requests
Cloud Storage - - - 0.025 GB-month
Total AWS S3/Cloud Storage 0.4545 0.4545 0.4545 0.425 Read/Store
SageMaker Provisioning 13.7376 13.7376 13.7376 - Fixed monthly
Vertex AI Provisioning - - - 61.056 Fixed monthly
SageMaker Inference 1.24 1.24 1.24 - request
Vertex AI Inference - - - 0.20 request
Total Fixed + Variable Costs 17.3086 17.2623 18.7807 62.5884 -

LEO offers the lowest latency, it significantly increases costs.

Inference (GCP), Data Processing (LEO), and Data Retrieval

(LEO) significantly exceed the cost and latency SLOs, making

it the least among the options evaluated. Latency and cost

results are further discussed in Section V-C and Section V-D,

respectively.

Performance-Cost Takeaway: The optimal line in Fig. 4

highlights the best trade-offs, with any function above it

requiring sacrifices in either cost or latency.
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Fig. 7: Cost breakdowns for AWS (x86, ARM), AWS Lambda@Edge (L@E)
and GCP across different functions in a serverless workflow for 1M requests.
(a) Data retrieval, (b) Data processing and (c) AI inference.

C. Latency Results

Fig. 5 presents the end-to-end latency results for serverless

functions across three workflows: data retrieval (Fig. 5a), data

processing (Fig. 5b), and inference (Fig. 5c). The x axis

represents the cloud providers (AWS and GCP), and the y axis

indicates response latency in milliseconds. For data retrieval,

AWS exhibits latencies ranging from 203 ms to 298 ms, while

GCP shows a range from 162 ms to 346 ms. In data processing,

AWS maintains a latency range of 145 ms to 183 ms, compared

to GCP’s range of 218 ms to 283 ms. For inference, AWS

demonstrates a latency range of 70 ms to 92 ms, while GCP

records latencies between 74 ms and 91 ms.

Latency Takeaway: GCP shows 13% lower latency for data-

intensive functions, while AWS outperforms GCP by 36%

in compute-intensive tasks. For AI inference, both perform

similarly, with AWS slightly faster.

D. Cost Results

Fig. 6 compares serverless workflow costs across AWS

(x86, ARM, Lambda@Edge) and GCP for data retrieval

(Fig. 6a), processing (Fig. 6b), and AI inference (Fig. 6c). GCP

consistently offers lower costs, especially at scale, while AWS

x86 and ARM have lower fixed costs but higher per-request

expenses. While AWS Lambda@Edge is deployed closer to end-

users and data sources, potentially reducing latency, in all three
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use cases, data retrieval (Fig. 6a), data processing (Fig. 6b), and

AI inference (Fig. 6c), AWS Lambda@Edge incurs the highest

per-request costs compared to AWS (x86 and ARM), and GCP.

For AI inference, GCP’s lower incremental costs make it more

cost-efficient beyond the crossover point requests; despite its

higher fixed cost, it remains more economical for sustained

workloads due to its lower incremental cost. Fig. 6d combines

the cost of all functions to estimate the total workflow costs.

Overall, if one considers the total workflow, AWS is cheaper

for low-volume requests, and after crossing the point of around

9 million requests, GCP becomes more cost-efficient.

Fig. 7 shows the cost breakdown for AWS (x86, ARM,

Lambda@Edge) and GCP across three workflows: data re-

trieval (Section V-D), data processing (Section V-D), and AI

inference (Section V-D). Costs are categorized into invocation,

execution, backend-as-a-service (BaaS), data transfer, and

state management. For data retrieval, data transfer dominates,

accounting for 53% (AWS x86), 54% (AWS ARM), and 75%

(Lambda@Edge), while GCP is at 52%. For data processing,

BaaS costs account for 44% of AWS, and data transfer

(37% AWS; 12% GCP) drives expenses. AWS Lambda@Edge

remains the most expensive due to high execution costs. For

AI inference, BaaS dominates, comprising 83% of AWS costs

and 97% of GCP.

Cost Provider Takeaway: GCP has 30% lower costs for

data-intensive and 57% for compute-intensive workloads

than AWS x86. AWS x86 has 75% lower costs for AI

inference at low workloads. AWS Lambda@Edge incurs

35% higher data retrieval and 25% higher data processing.

Cost Driver Takeaway: In data retrieval functions, data trans-

fer and state management drive costs, making up 53% (AWS

x86), 54% (AWS ARM), and 75% (AWS Lambda@Edge),

compared to 52% on GCP. In data processing, BaaS is the

primary cost driver, accounting for 60% of AWS x86 and

ARM, and 48% of AWS Lambda@Edge, while data transfer

contributes 37%, 38%, and 29%, respectively, versus 12%

on GCP. In AI inference, BaaS dominates, comprising 83%

of AWS costs and 97% of GCP.

E. Threats to Validity

Conducting experiments in space is still challenging due

to the high cost, limited accessibility, and lack of publicly

available pricing models for in-orbit processing. To the best of

our knowledge, there is no standardized cost framework for

LEO-based pay-per-use processing. Therefore, our evaluation

focuses on edge-cloud-based serverless workflows, which

provide a controlled environment that enables us to identify and

characterize key cost drivers. For LEO, we make assumptions

about pricing models to be able to show the performance

trade-off between latency and costs based on Takeme2Space

[36]. While our findings provide a foundation for developing

a framework that captures key cost-performance trade-offs, we

acknowledge that they may vary as pricing models across the

3D Continuum evolve.

VI. RELATED WORK

Costless [29] analyzes the different factors that affect the

pricing in serverless functions and presents a framework that

predicts the cost and decides about function placement and

fusion to minimize the costs. Costless cost model provides gran-

ular insights into AWS Lambda functions. However, their case

study is tailored for one cloud provider and does not capture the

dynamic characteristics of heterogeneous environments such

as the 3D Continuum. In [30], authors present a cost model

that estimates the total cost of geodistributed training in a

multicloud environment, considering the compute cost, storage

cost, and data transfer cost. Nevertheless, this cost model

only considers storage as a BaaS service, neglecting additional

services such as API gateways, costs specific to data transfers,

and fixed costs associated with AI-related services. In [16],

the authors introduce a tool to predict and optimize the costs of

serverless workflows without time-consuming experimentation.

The proposed approach leverages Mixture Density Networks to

model response time and Monte Carlo simulations to estimate

the costs of entire workflows. Although this framework offers

high accuracy, it considers the workflow as a whole, making

it challenging to identify the most costly parts and how to

minimize their impact on costs. COSTA [19] proposes an

adaptive cost management framework that constantly monitors

and migrates microservices applications across cloud providers

to adjust to real-time pricing, reducing costs and avoiding cost

SLO violations. However, such frameworks are tailored for

VM applications, such as microservices, overlooking serverless-

specific costs like BaaS and related services. It also focuses on

runtime costs, neglecting fixed costs such as subscriptions or

reserved instances, which can be significant for some functions.

Unlike these frameworks that aggregate serverless workflow

costs, Cosmos categorizes costs into fixed (e.g., monthly fees)

and operational (e.g., invocation, compute, BaaS, storage, and

data transfer), allowing precise cost breakdowns and targeted

optimizations.

VII. CONCLUSION

In this paper, we introduce Cosmos, a cost model and

performance-cost tradeoff model for serverless workflows,

focusing on a detailed classification of main cost drivers such

as invocation, compute, data transfer, state management, and

BaaS. By analyzing serverless functions with different workload

characteristics, such as data and compute intensity, our cost

model provides a comprehensive understanding of serverless

costs in the 3D Continuum. To validate our proposed cost

model, we executed experiments on leading cloud platforms

such as AWS and GCP. The results show that data transfer

and state management costs significantly account for 75% of

the costs of IO-intensive functions. On the other hand, BaaS

costs dominate compute-intensive functions, accounting for as

much as 97%. While processing data closer to the function

provides lower latency, it incurs up to 35% higher costs. These
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results highlight the need to align workload characteristics with

the dynamic conditions of the 3D Continuum. A fine-grained

cost classification is crucial for addressing workload-specific

requirements while maximizing performance and minimizing

operational costs. In future work, we plan to introduce different

optimization mechanisms based on workload characteristics and

compare them against state-of-the-art approaches. Additionally,

we aim to develop an intelligent framework capable of

predicting costs for individual functions in a workflow and

dynamically selecting the most suitable layer and provider,

accounting for workload-specific characteristics and SLOs,

such as latency and cost.
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