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Abstract—Due to the high scalability, infrastructure manage-
ment, and pay-per-use pricing model, serverless computing has
been adopted in a wide range of applications such as real-
time data processing, IoT, and Al-related workflows. However,
deploying serverless functions across dynamic and heterogeneous
environments such as the 3D (Edge-Cloud-Space) Continuum
introduces additional complexity. Each layer of the 3D Continuum
shows different performance capabilities and costs according
to workload characteristics. Cloud services alone often show
significant differences in performance and pricing for similar
functions, further complicating cost management. Additionally,
serverless workflows consist of functions with diverse character-
istics, requiring a granular understanding of performance and
cost trade-offs across different infrastructure layers to be able
to address them individually. In this paper, we present Cosmos,
a cost- and a performance-cost-tradeoff model for serverless
workflows that identifies key factors that affect cost changes
across different workloads and cloud providers. We present a
case study analyzing the main drivers that influence the costs of
serverless workflows. We demonstrate how to classify the costs of
serverless workflows in leading cloud providers AWS and GCP.
Our results show that for data-intensive functions, data transfer
and state management costs contribute to up to 75% of the costs
in AWS and 52% in GCP. For compute-intensive functions such
as Al inference, the cost results show that BaaS services are the
largest cost driver, reaching up to 83% in AWS and 97% in GCP.

Index Terms—serverless, cost, edge, space, cloud, continuum

[. INTRODUCTION

Serverless computing offers high scalability and automatic in-
frastructure management with fine-grained resource utilization
in a pay-per-use business model [1,2, 3]. Due to its advantages,
serverless computing has been widely adopted in different
applications such as real-time data processing, 10T, and Al
inference [4,5,6]. Small pieces of code are wrapped in short-
lived functions managed by the platform. Typically, serverless
functions are event-driven and stateless, which means they
leverage external services, called Backend-as-a-Service (BaaS),
to manage state and additional features, such as request routing,
Al inference, and user authentication. Although functions are
billed only for the execution time, the dependence on BaaS
services leads to additional costs [7,8,9, 10].

Recently, the deployment of thousands of Low Earth Orbit
(LEO) satellites with inter-satellite links (ISL) allows extending
serverless computing beyond the edge and cloud into space,
forming a 3D Compute Continuum. This continuum allows
for dynamic and efficient execution of serverless workflows
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that leverage the advantages of each of its three layers: Edge
computing for low-latency processing near data sources, the
cloud for scalable, high-capacity computing, and LEO satellites
for in-orbit processing and low-latency communication to
reduce reliance on Earth-based data transfer [11, 12].

However, reliably predicting the costs of serverless work-
flows remains challenging. Cloud providers impose complex
pricing models for different services, while edge and space
layers of the 3D Continuum add further complexities, such as
limited resources and energy constraints [13, 14]. Furthermore,
functions in a workflow may vary from compute-intensive to
data-intensive tasks, each with distinct resource and perfor-
mance demands [13, 15]. Therefore, it is essential to model
the costs of each function in a workflow to allow for finding
an appropriate performance-cost tradeoff.

Common approaches for serverless cost estimation include:
(a) Predictions [16,17, 18] use models, such as ML and math
models to estimate costs based on historical execution data.
This enables the estimation and analysis of costs without
executing or even deploying a workflow. However, these
high-level predictions often fail to provide detailed cost
breakdowns or to identify the main drivers of higher expenses.
(b) Simulations [19,20,21] enable users to explore how costs
behave under different parameter configurations. They offer
valuable insights into performance and expenses across various
workload patterns, highlighting important trade-offs. However,
existing simulation tools often lack fine-grained parameters to
identify which aspects contribute to higher costs.

Since current cost models are not detailed enough for precise
performance-cost tradeoff decisions, users often err on the side
of caution and incur higher costs to ensure performance. To
address this gap, we present a classification of serverless costs,
focusing on isolating and identifying the main cost drivers
of workflows. The Cosmos cost model enables the building
of intelligent frameworks to optimize serverless costs and
maximize performance. Our main contributions include:

o Cosmos: A cost and a performance-cost tradeoff model for
serverless workflows that incorporates the heterogeneity
and dynamic characteristics of the 3D Continuum. Cosmos
isolates the main cost drivers while accounting for their
interdependencies, providing an understanding of how
different factors impact execution and cost, e.g., resource
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constraints, workload characteristics, communication over-
head, and dynamic pricing.

o A cost taxonomy that classifies the main cost drivers,
enabling their identification among invocation, compute,
data transfer, state management, and BaaS. This provides
insights into specific cost drivers for serverless workflows
across the different layers of the 3D Continuum.

o A case study on different commercial cloud and edge
providers, including AWS x86, AWS ARM, AWS
Lambda@Edge, and GCP. We analyze the primary cost
drivers associated with each platform. Since executing
experiments in space is currently impractical, we use cloud
and edge experiments to systematically evaluate each cost
driver and extrapolate the insights to the 3D Continuum.

Our experiments show that data transfer and state manage-
ment costs account for 75% of AWS costs and 52% of GCP
costs for IO-intensive workloads. On the other hand, BaaS
costs are the largest in compute-intensive functions, reaching
up to 83% on AWS and 97% on GCP. Our performance-cost
model highlights the options with the best tradeoff.

II. ILLUSTRATIVE SCENARIO & RESEARCH QUESTIONS

A. Illustrative Scenario

Fig. 1 shows an illustrative scenario, where the 3D Contin-
uum enables a scalable serverless workflow for deforestation
detection in remote areas, inspired by the DETER program
in Brazil [22]. Drones collect environmental data, such as
temperature, CO, levels, and high-resolution images. They
transmit data to LEO satellites, which combine the edge-
collected data with Earth observation (EO) imagery in a
preprocessing step directly in orbit. Data volume reduction
in space is more efficient than downlinking raw EO satellite
data (1,5 TB per day [23,24]) to Earth over a radio connection
with an average speed of 300 Mbps [25]. ISLs do not suffer
from interference from the Earth’s atmosphere and can offer
bandwidths up to 100 Gbps [26,27]. Hence, the transfer
time from EO satellites is reduced. The preprocessed data
is downlinked to the cloud for performing deforestation pattern
detection with compute-intensive ML models. By properly
distributing tasks across the 3D Continuum, data can be pre-
processed closer to the source, such that compute-intensive Al
inference tasks in the cloud receive their inputs faster, resulting
in an overall reduction in end-to-end execution time.

Optimizing data processing across all layers of the 3D Con-
tinuum is crucial to maximizing performance without depleting
resource-constrained devices such as edge devices and LEO
satellites. This requires identifying the performance and cost
factors within each layer to address specific limitations and
enable the 3D Continuum to process the serverless workflow
effectively. By understanding these factors, frameworks can
dynamically allocate workloads in the most suitable locations
to minimize costs while maximizing performance on resource-
limited devices and reducing overall execution time.
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Fig. 1: Deforestation detection scenario with on-ground and in-orbit processing
with serverless for the 3D Continuum.

B. Research Questions

We identify the following research questions in optimizing
and classifying the costs across the 3D Continuum.

RQ-1: How can serverless workflows in the 3D Continuum
be optimized according to their workload characteristics?

Optimizing serverless workflows across the 3D Continuum
is challenging due to the varied characteristics of each infras-
tructure layer. Edge devices have limited computational power
but provide low latency. Cloud services offer high scalability,
but have higher latency and dynamic pricing, which can impact
cost-sensitive workflows. LEO satellites provide low-latency
network connections around the globe, but they have limited
computational resources, and their power supply and onboard
heat generation depend on their current position relative to the
sun [11,12,28]. To optimize serverless workflows, we need
to identify the workload requirements and associated costs for
functions, especially when workloads have different needs for
computing, resource usage, data transfer, and BaaS services.

RQ-2: How can cost models accurately capture and predict
serverless execution costs for heterogeneous environments?

Accurate prediction of serverless costs across diverse in-
frastructure layers requires accounting for the different char-
acteristics, such as execution time, pricing, and operational
constraints. It is essential to identify and integrate cost drivers
from the dynamic characteristics of workload and infrastructure
into a unified cost model. State-of-the-art serverless cost
models [20, 29] do not provide fine-grained cost drivers such as
fixed and dynamic prices to model the total cost of serverless
functions. Failing to identify and integrate the cost drivers of
dynamic environments, such as the 3D Continuum, can lead
to inaccurate cost estimates, resulting in inefficient resource
allocation, reduced performance, and increased expenses.

RQ-3: How to evaluate and benchmark cost drivers for
serverless functions in the heterogeneous 3D Continuum?
Validating cost models and workloads for serverless functions
requires benchmarking across different infrastructures [18, 30].
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However, replicating serverless workflows across edge, cloud,
and space is challenging, mainly due to cross-layer interactions
such as edge-to-cloud or cloud-to-space data transfers, compli-
cating performance and cost evaluations. Therefore, isolating
the impact of specific cost drivers in such heterogeneous
environments is complex and expensive.

III. SERVERLESS MAIN COST DRIVERS IN THE 3D
CONTINUUM AND COSMOS COST AND
PERFORMANCE-COST TRADEOFF MODEL

The serverless computing pricing model allows serverless
functions to be billed only for execution time, avoiding costs
with idle computing resources. Typically, a serverless workflow
(Fig. 2) is composed of multiple functions distributed across
the 3D Continuum that generate costs across several distinct
factors. Each cost driver represents a specific characteristic
of the task executed and services consumed during serverless
workflow execution.

A. Serverless Main Cost Drivers in the 3D Continuum

Fig. 3 presents a taxonomy of the main cost drivers associated
with serverless workflows, highlighting the focus of this analy-
sis: Invocation, Compute, Data Transfer, and State Management.
The main cost drivers are directly tied to the execution and
performance of serverless functions, representing the most
variable and impactful cost components in typical serverless
workflows. Unlike some fixed costs, such as subscriptions and
provisioned resources, which remain constant regardless of
usage, the underlined drivers exhibit cost fluctuations based on
function activity, data flows, and resource consumption.

a) Invocation: Invocation is the cost incurred each time
a serverless function is triggered. This cost is calculated on a
per-request basis and remains constant, regardless of the size of
the request payload or the execution time of the function. The
number of invocations or requests can influence the serverless
platform’s decision on scaling the function up or down.

b) Compute: Compute costs are determined by the
execution time of the function and the allocated computational
resources. It includes pricing based on the execution time
in seconds and the memory allocated to the function, often
represented in GB-seconds. The cost is directly proportional
to the intensity of computation and the duration for which
resources are consumed during each invocation.

c) State Management: Serverless functions are by design
stateless, which means they leverage external services to store
and manage state. As shown in Fig. 3, State Management is also
a BaaS. However, as detailed in Section V, state management
constitutes a significant portion of the overall function cost.
It involves the persistence and handling of required data
for executing serverless functions. These costs arise from
storage retention, which may be fixed (e.g., monthly storage)
or dynamic (e.g., per-operation costs). Typically, serverless
functions leverage many state management services, such as
object storage, key-value store (KVS), message brokers, and
databases.

108

Input :h @ @

g(— i o
Data Data

Retrieval Processing Inference
'
a¢ 2 a¢ o Y
S §
xS &
Costs: Dlnvocation DCompute DState DData Transfer DBaaS

Workload: eData intensive QCompute intensive
3D Layer: @ Edge “: Space .Cloud

q} Ingress

BaaS Serverless Platform

Fig. 2: Simplified serverless workflow for deforestation with main cost drivers
along and workload characteristics of each function.

d) Data Transfer: Data transfer refers to the data move-
ment between serverless functions and external systems. This
includes both inbound and outbound data traffic, which may
involve transferring data among serverless functions, external
databases, and clients. Typically, the pricing model for data
transfer is based on the volume of data transferred, measured in
gigabytes (GB), and the network path used, such as intra-region
and inter-region transfers.

e) BaaS: BaaS costs refer to the charges associated
with additional services that support serverless functions
and workflows. These services include managed APIs, event
gateways, data processing frameworks (such as Glue DPU),
and Al platforms such as AWS SageMaker and Vertex Al.
The costs for these additional services can be divided into two
categories: fixed costs, associated with hourly or monthly fees
for service availability, and dynamic costs, which change based
on the number of requests, the amount of data processed, or
specific operations performed.

B. Cosmos Cost Model

The total cost of a serverless workflow is represented as
the sum of each cost driver: invocation, computation, state
management, data transfer, and BaaS [10,30,31]. Cosmos
proposes to isolate the main cost drivers of serverless workflows
to better understand their impact, even though these costs are
interconnected. For example, while data transfer costs can
affect execution time for large inputs, our model distinguishes
between these factors to determine whether variations in
compute time are due to the complexity of the workload or
the overhead related to data movement.

a) Function Invocation Cost: The invocation cost C' ™
for function 7 accounts for the fixed price incurred for each
request handled by the function, where n; is the number of
requests handled by a function ¢, and pin;, the price per
invocation for the function 7. Thus, the invocation cost can be
expressed as:

Cimv = Ny * Pinv,i

)]
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Fig. 3: Serverless workflow costs drivers, highlighting key cost drivers:

Invocation, Compute, Data Transfer, and State Management (partial view).

b) Compute Cost: The compute cost C ***° for function
1 depends on the execution time and computational resources
consumed, where n; is the number of requests received by
function 4, ?;, the compute time per request, and Peec,i, the
price per GB-second for execution. The data transfer for each
request is calculated in Eq. (4). Thus, the compute cost for a
specific compute duration can be expressed as:
Giexec =N - i * Dexec,i 2
c) State Management Costs: The state management cost
C' s for function i relates to additional services to store
the function state such as storage systems. Typically, state
management for each function ¢ includes d;, the amount of
data stored (typically in GB), psate_fixed,i> the price per GB of
fixed storage costs in a certain amount of time (e.g., monthly
charges). Therefore, the storage cost can be expressed as:

state
G

3)

di * Pstate_fixed, i

d) Data Transfer Cost: The data transfer cost C' "fer for
a function accounts for the cost of transferring data both into
and out of the function. It depends on the number of requests
n;, handled by function 4, 7, ; and 74y, the total input and
output data size transferred per request, respectively, and py_in ;
and p_ou,i, the respective prices per GB for input and output
data transfer. The total data transfer cost can be expressed as:

C transfer
i

=N, - (rin,i * Pi_in,i + Tout,i * pt_out,i) 4

e) BaaS Costs: The BaaS cost C"™ for each function
¢ includes tfied,s, the duration of fixed-cost services; prixed, i
the price per unit time for fixed costs; n;, the number of
requests handled; r;, the data processed per request (in GB);
and Pgynamic,i» the price per unit for dynamically priced services.
Therefore, the BaaS cost can be expressed as:

(&)

baas
O™ = thixed,i * Plixed,i T M * T * Ddynamic,i
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f) Total Compute Layer-Specific Cost: Different layers
might introduce different pricing models. For instance, LEO-
based processing introduces unique computation costs for
satellites, due to their high launch costs. Therefore, the total cost
C; 1. of a workflow aggregates the invocation, compute, state,
data transfer, and BaaS costs for all functions in the workflow
across every layer of the 3D Continuum. It is expressed as the
sum of individual costs for all functions 7 in F', executed in
layer L € {e,c, s}, where e edge, ¢ cloud, and s space:

Cii =C% + O + O+ O 4 O fp
C. Cosmos Performance-Cost Trade-off Model

Optimizing serverless workflow execution in the 3D Com-
pute Continuum requires balancing two competing objectives:
minimizing costs and minimizing execution time. Processing
functions closer to the data source (e.g., edge or space) reduces
execution time but incurs higher costs, while cloud resources
are cost-effective but introduce latency. Therefore, we define
an optimization model that dynamically determines function
execution while respecting a given budget and latency SLO
constraints.

We define the total execution time of function ¢ on layer L as
T;,1, Our goal is to minimize both total cost and total execution
time, where o and 3 are weighting factors that dynamically
adjust the relative importance of cost and execution time. Our
performance-cost model can be defined as:

min Z Z (aC’LL + ﬂTi,L)

(©6)

i€F L

s.t. Z Z C;.1, < B, (Budget constraint)
i€F L
Z Z T;.1, < Liax, (Latency SLO constraint)
i€F L

@)

Instead of manually selecting o and 3, we employ a

Pareto front approach [32,33] to dynamically balance cost and

execution time. We solve two separate optimization problems

to determine the best-case scenarios for cost and execution

time. We first minimize cost without considering execution
time. Let the cost minimization from this be C*:

C* = minZZCLL = «

i€F L

1

-=  ®

Next, we minimize execution time and let this minimization
be T™:

= ©)

T*=min) Y Ti, = f=

i€F L
Cosmos performance-cost model trade-off ensures an optimal
balance in which cost and performance are equally prioritized
by dynamically adjusting weighting o and 3 based on the best
achievable budget and latency SLOs, making it well-suited for

optimizing serverless workflows in 3D Compute Continuum.
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IV. CASE STUDY IMPLEMENTATION

We implemented a simplified serverless workflow as de-
scribed in Section II-A. We identified the cost drivers using
AWS (x86, ARM, and Lambda@Edge) and GCP, which offer
detailed billing metrics and in-depth insights. Our case study
has three serverless functions: data retrieval, data processing,
and Al inference. Each function is implemented in Python with
the required BaaS services to emulate real-world serverless
workflows and measure their cost drivers. Our case study
implementation is published as an open-source framework part
of the Polaris SLO Cloud project and available on Github'.

a) Data Retrieval: We use AWS Lambda for compute,
API Gateway for HTTP requests, and retrieve data from
DynamoDB or S3. In GCP, we use Cloud Functions to interact
with Firestore for queries and Cloud Storage for retrieval,
responding directly to HTTP requests.

b) Data Processing: In AWS, we utilize Lambda for com-
puting, API Gateway for request handling, and AWS Glue to
execute ETL tasks, with data written to S3 or DynamoDB. GCP
implements Cloud Functions for orchestration and Dataflow
for ETL processing, leveraging its pay-as-you-go model for
CPU, memory, and data transfer.

c) Al Inference: We use AWS Lambda for preprocessing,
API Gateway for request handling, and SageMaker Serverless
for inference, while in GCP, Cloud Functions route requests to
Vertex Al for model execution. Invocation, execution, storage,
and data transfer costs are logged via AWS CloudWatch and
GCP Cloud Monitoring to validate our cost model.

V. EVALUATION

To validate our cost model, we implement and evaluate
a serverless workflow containing typical tasks in image
processing as described in our illustrative scenario in Fig. 1.
We executed the implemented workflow in two major leading
cloud serverless platforms, AWS Lambda [34] and GCP Google
Cloud Functions (GCF) [35].

a) Metrics: Performance-Cost Trade-off shows the trade-
offs between lower latency and lower costs. Latency shows the
mean execution time for each function from the HTTP client.
Cost evaluates the financial costs of the functions by analyzing
function invocation, execution costs, and data transfers, as
well as the costs associated with BaaS services. The costs are
calculated in USD per million requests.

b) Baselines: In our experiments, we validate our cost
model and compare the designed metrics for our serverless
functions between two leading cloud providers, AWS and GCP.

A. Experimental Setup

We executed the workflow presented in Fig. 2 using
services from AWS and GCP. For each function, we se-
lected similar services, such as Cloud Storage and AWS
S3. We deployed AWS functions with 128MB RAM in the

eu-central-1 (Frankfurt) region, and GCP functions

Uhttps://github.com/polaris-slo-cloud/cosmos
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Fig. 5: End-to-end latency for serverless workflows for AWS(x86) and GCP

in the europe-west3-a (Frankfurt) region. We exe-
cuted HTTP requests using the Postman REST client on a
MacBook Pro 2020 with an i7 processor. To ensure consistency,
for each experiment presented, we performed the tests five
times sequentially and at similar times for both providers and
calculated the mean results to analyze performance and costs
under varying workload scenarios.

B. Performance-Cost Trade-off Results

Fig. 4 depicts the trade-off between latency and cost for
different layers and platforms in the 3D continuum, including
AWS (x86, ARM, Lambda@Edge), GCP, and a hypothetical
LEO. To the best of our knowledge, there is no existing pay-
per-use pricing model for LEO computing yet; therefore, we
assume that LEO execution price of 49USD for 1M requests
per ms executed based on [36], while achieving lower latency
than L@E [26,27], and L@E offers nearly 2x lower latency
over AWS Lambda [37]. Further, to better understand the
trade-offs and capture layer-specific impact, we assume that
functions run entirely on a single layer, each offering a similar
resource capacity. In Fig. 4, the dashed red line represents the
optimal cost-latency trade-off. The points below are infeasible,
as no deployment can achieve both lower cost and latency,
illustrated by the utopia point, which represents the lowest cost
and latency but is unreachable. The points above the optimal
line are feasible but always involve trade-offs of either higher
cost or latency. Inference (x86, ARM, and GCP) functions do
not appear on the optimal line due to their high costs, which
are driven by BaaS costs, making them less cost-effective
compared to Data Retrieval and Data Processing. Although

Authorized licensed use limited to: University of Patras. Downloaded on October 17,2025 at 13:55:44 UTC from IEEE Xplore. Restrictions apply.



—o— AWS (x86) —— AWS (ARM) —e— AWS Lambda@Edge —=— GCP * Crossover Point

A 300 T T — 300 — T T — 300 T T
n 600
= 200 | -1 200 |~ -1 200
g 400
100 |- -| 100 |- =
% 00 00 100 200
S Ul ! \ L U ! \ L 0 0 \ I \
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Million Requests Million Requests

(a) Data Retrieval (b) Data Processing

Million Requests Million Requests

(c) Al Inference (d) Total Workflow Cost
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TABLE I: Detailed cost comparison across serverless functions for AWS (x86,
ARM, Lambda@Edge (L@E)) and GCP in USD for 1M requests.

Workflow Component AWS (x86) AWS (ARM) L@E GCP Cost Unit

Data Function Invocation 0.20 0.20 0.60 0.40 1M requests

Retrieval Function Execution 0.213 0.1667 0.6251 0.2304 GB-second
API Gateway 1.06 1.06 1.06 - 1M requests
DynamoDB Reads 0.1345 0.1345 0.1345 1M requests
DynamoDB Storage 0.269 0.269 0.269 - GB-month
Firestore Reads - - - 0.046 1M requests
Firestore Storage - - - 0.231 GB-month
Total DynamoDB/Firestore 0.4035 0.4035 0.4035 0.277 Read/Store
AWS S3 Retrieval 0.43 0.43 0.43 - 1M requests
AWS 83 Storage 0.0245 0.0245 0.0245 - GB-month
Cloud Storage Retrieval - - - 0.4 IM requests
Cloud Storage - - - 0.025 GB-month
Total AWS S3/Cloud Storage  0.4545 0.4545 0.4545 0.425 Read/Store
Total 2.331 2.2847 3.1431 1.3324

Data Function Invocation 0.20 0.20 0.60 0.40 1M requests

Processing  Function Execution 0.213 0.1667 0.6251 0.276 GB-second
API Gateway 1.06 1.06 1.06 - 1M requests
DynamoDB Reads 0.1345 0.1345 0.1345 IM requests
DynamoDB Storage 0.269 0.269 0.269 - GB-month
Firestore Reads - - - 0.046 1M requests
Firestore Storage - - - 0.231 GB-month
Total DynamoDB/Firestore 0.4035 0.4035 0.4035 0.277 Read/Store
AWS S3 Retrieval 0.43 0.43 0.43 - IM requests
AWS S3 Storage 0.0245 0.0245 0.0245 - GB-month
Cloud Storage Retrieval - - - 04 IM requests
Cloud Storage - - - 0.025 GB-month
Total AWS S3/Cloud Storage  0.4545 0.4545 0.4545 0.425 Read/Store
Glue DPU (2-hour ETL) 0.88 0.88 0.88 - Processing
Dataflow CPU - - - 0.07325  CPU-hour
Dataflow Memory 0.00465  GB-hour
Dataflow Processed Data - - - 0.01439  GB processed
Total ETL Costs 0.88 0.88 0.88 0.09229  DPU/Dataflow
Total 3211 3.1647 4.0031 147029 -

Al Function Invocation 0.20 0.20 0.60 0.40 IM requests

Inference Function Execution 0.213 0.1667 0.6251 0.2304 GB-second
API Gateway 1.06 1.06 1.06 o IM requests
DynamoDB Reads 0.1345 0.1345 0.1345 1M requests
DynamoDB Storage 0.269 0.269 0.269 = GB-month
Firestore Reads - - - 0.046 IM requests.
Firestore Storage - - - 0.231 GB-month
Total DynamoDB/Firestore 0.4035 0.4035 0.4035 0.277 Read/Store
AWS S3 Retrieval 0.43 0.43 0.43 - 1M requests
AWS S3 Storage 0.0245 0.0245 0.0245 - GB-month
Cloud Storage Retrieval = = = 04 IM requests
Cloud Storage - - - 0.025 GB-month
Total AWS S3/Cloud Storage  0.4545 0.4545 0.4545 0.425 Read/Store
SageMaker Provisioning 13.7376 13.7376 13.7376 - Fixed monthly
Vertex Al Provisioning - - - 61.056 Fixed monthly
SageMaker Inference 1.24 1.24 1.24 - request
Vertex Al Inference - - - 0.20 request
Total Fixed + Variable Costs  17.3086 17.2623 18.7807  62.5884 -

LEO offers the lowest latency, it significantly increases costs.
Inference (GCP), Data Processing (LEO), and Data Retrieval
(LEO) significantly exceed the cost and latency SLOs, making
it the least among the options evaluated. Latency and cost
results are further discussed in Section V-C and Section V-D,
respectively.

Performance-Cost Takeaway: The optimal line in Fig. 4
highlights the best trade-offs, with any function above it
requiring sacrifices in either cost or latency.
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Fig. 7: Cost breakdowns for AWS (x86, ARM), AWS Lambda@Edge (L@E)
and GCP across different functions in a serverless workflow for 1M requests.
(a) Data retrieval, (b) Data processing and (c) Al inference.

C. Latency Results

Fig. 5 presents the end-to-end latency results for serverless
functions across three workflows: data retrieval (Fig. 5a), data
processing (Fig. 5b), and inference (Fig. 5c). The x axis
represents the cloud providers (AWS and GCP), and the y axis
indicates response latency in milliseconds. For data retrieval,
AWS exhibits latencies ranging from 203 ms to 298 ms, while
GCP shows a range from 162 ms to 346 ms. In data processing,
AWS maintains a latency range of 145 ms to 183 ms, compared
to GCP’s range of 218 ms to 283 ms. For inference, AWS
demonstrates a latency range of 70 ms to 92 ms, while GCP
records latencies between 74 ms and 91 ms.

Latency Takeaway: GCP shows 13% lower latency for data-
intensive functions, while AWS outperforms GCP by 36%
in compute-intensive tasks. For Al inference, both perform
similarly, with AWS slightly faster.

D. Cost Results

Fig. 6 compares serverless workflow costs across AWS
(x86, ARM, Lambda@Edge) and GCP for data retrieval
(Fig. 6a), processing (Fig. 6b), and Al inference (Fig. 6¢). GCP
consistently offers lower costs, especially at scale, while AWS
x86 and ARM have lower fixed costs but higher per-request
expenses. While AWS Lambda@ZEdge is deployed closer to end-
users and data sources, potentially reducing latency, in all three
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use cases, data retrieval (Fig. 6a), data processing (Fig. 6b), and
Al inference (Fig. 6¢), AWS Lambda@Edge incurs the highest
per-request costs compared to AWS (x86 and ARM), and GCP.
For Al inference, GCP’s lower incremental costs make it more
cost-efficient beyond the crossover point requests; despite its
higher fixed cost, it remains more economical for sustained
workloads due to its lower incremental cost. Fig. 6d combines
the cost of all functions to estimate the total workflow costs.
Overall, if one considers the total workflow, AWS is cheaper
for low-volume requests, and after crossing the point of around
9 million requests, GCP becomes more cost-efficient.

Fig. 7 shows the cost breakdown for AWS (x86, ARM,
Lambda@Edge) and GCP across three workflows: data re-
trieval (Section V-D), data processing (Section V-D), and Al
inference (Section V-D). Costs are categorized into invocation,
execution, backend-as-a-service (BaaS), data transfer, and
state management. For data retrieval, data transfer dominates,
accounting for 53% (AWS x86), 54% (AWS ARM), and 75%
(Lambda@Edge), while GCP is at 52%. For data processing,
BaaS costs account for 44% of AWS, and data transfer
(37% AWS; 12% GCP) drives expenses. AWS Lambda@Edge
remains the most expensive due to high execution costs. For
Al inference, BaaS dominates, comprising 83% of AWS costs
and 97% of GCP.

Cost Provider Takeaway: GCP has 30% lower costs for
data-intensive and 57% for compute-intensive workloads
than AWS x86. AWS x86 has 75% lower costs for Al
inference at low workloads. AWS Lambda@Edge incurs
35% higher data retrieval and 25% higher data processing.

Cost Driver Takeaway: In data retrieval functions, data trans-
fer and state management drive costs, making up 53% (AWS
x86), 54% (AWS ARM), and 75% (AWS Lambda@Edge),
compared to 52% on GCP. In data processing, BaaS is the
primary cost driver, accounting for 60% of AWS x86 and
ARM, and 48% of AWS Lambda@Edge, while data transfer
contributes 37%, 38%, and 29%, respectively, versus 12%
on GCP. In Al inference, BaaS dominates, comprising 83%
of AWS costs and 97% of GCP.

E. Threats to Validity

Conducting experiments in space is still challenging due
to the high cost, limited accessibility, and lack of publicly
available pricing models for in-orbit processing. To the best of
our knowledge, there is no standardized cost framework for
LEO-based pay-per-use processing. Therefore, our evaluation
focuses on edge-cloud-based serverless workflows, which
provide a controlled environment that enables us to identify and
characterize key cost drivers. For LEO, we make assumptions
about pricing models to be able to show the performance
trade-off between latency and costs based on Takeme2Space
[36]. While our findings provide a foundation for developing
a framework that captures key cost-performance trade-offs, we
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acknowledge that they may vary as pricing models across the
3D Continuum evolve.

VI. RELATED WORK

Costless [29] analyzes the different factors that affect the
pricing in serverless functions and presents a framework that
predicts the cost and decides about function placement and
fusion to minimize the costs. Costless cost model provides gran-
ular insights into AWS Lambda functions. However, their case
study is tailored for one cloud provider and does not capture the
dynamic characteristics of heterogeneous environments such
as the 3D Continuum. In [30], authors present a cost model
that estimates the total cost of geodistributed training in a
multicloud environment, considering the compute cost, storage
cost, and data transfer cost. Nevertheless, this cost model
only considers storage as a BaaS service, neglecting additional
services such as API gateways, costs specific to data transfers,
and fixed costs associated with Al-related services. In [16],
the authors introduce a tool to predict and optimize the costs of
serverless workflows without time-consuming experimentation.
The proposed approach leverages Mixture Density Networks to
model response time and Monte Carlo simulations to estimate
the costs of entire workflows. Although this framework offers
high accuracy, it considers the workflow as a whole, making
it challenging to identify the most costly parts and how to
minimize their impact on costs. COSTA [19] proposes an
adaptive cost management framework that constantly monitors
and migrates microservices applications across cloud providers
to adjust to real-time pricing, reducing costs and avoiding cost
SLO violations. However, such frameworks are tailored for
VM applications, such as microservices, overlooking serverless-
specific costs like BaaS and related services. It also focuses on
runtime costs, neglecting fixed costs such as subscriptions or
reserved instances, which can be significant for some functions.

Unlike these frameworks that aggregate serverless workflow
costs, Cosmos categorizes costs into fixed (e.g., monthly fees)
and operational (e.g., invocation, compute, BaaS, storage, and
data transfer), allowing precise cost breakdowns and targeted
optimizations.

VII. CONCLUSION

In this paper, we introduce Cosmos, a cost model and
performance-cost tradeoff model for serverless workflows,
focusing on a detailed classification of main cost drivers such
as invocation, compute, data transfer, state management, and
BaaS. By analyzing serverless functions with different workload
characteristics, such as data and compute intensity, our cost
model provides a comprehensive understanding of serverless
costs in the 3D Continuum. To validate our proposed cost
model, we executed experiments on leading cloud platforms
such as AWS and GCP. The results show that data transfer
and state management costs significantly account for 75% of
the costs of 10-intensive functions. On the other hand, BaaS
costs dominate compute-intensive functions, accounting for as
much as 97%. While processing data closer to the function
provides lower latency, it incurs up to 35% higher costs. These
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results highlight the need to align workload characteristics with
the dynamic conditions of the 3D Continuum. A fine-grained
cost classification is crucial for addressing workload-specific
requirements while maximizing performance and minimizing
operational costs. In future work, we plan to introduce different
optimization mechanisms based on workload characteristics and
compare them against state-of-the-art approaches. Additionally,
we aim to develop an intelligent framework capable of
predicting costs for individual functions in a workflow and
dynamically selecting the most suitable layer and provider,
accounting for workload-specific characteristics and SLOs,
such as latency and cost.
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