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ABSTRACT

Serverless computing is emerging as a promising paradigm to man-
age compute in Edge-Cloud continuum. However, distributing and
balancing the computational load (serverless functions) across the
continuum remains a significant challenge. In this paper, we in-
troduce ATTENTIONFUNC — a novel framework for decentralized
and efficient function offloading and computation balancing in the
Edge-Cloud continuum. The ATTENTIONFUNC framework strives
to introduce a fully decentralized decision-making model that ac-
counts for the multi-objective nature of serverless workflows, the
limitations of shared resources in the Edge-Cloud environment,
and the dynamic behaviors such as resource contentions or coop-
erations among serverless functions. In addition, ATTENTIONFUNC
incorporates an innovative multi-agent offloading model based on
the Markov Decision Process (MDP), designed to minimize func-
tions’ execution time and costs. The application of MDP allows the
framework to efficiently address these issues using deep reinforce-
ment learning approaches, with an aim to significantly improve
function completion latency. Furthermore, ATTENTIONFUNC pio-
neers an attention-based optimization mechanism for multi-agent
deep reinforcement learning. This mechanism permits DRL agents
to reach a consensus with minimal coordination information, lead-
ing to substantial reductions in communication and computation
overhead. We evaluate ATTENTIONFUNC and compare it against
select relevant state-of-the-art approaches. Our experiments and
simulations show that ATTENTIONFUNC outperforms state-of-the-
art approaches in terms of 1) the completion latency (up to 44.2%
reduction), 2) the function success rate (up to 43.3% increase). Addi-
tionally, we provide the results of many experiments with different
MEC scenarios to highlight the components of our approach that
influence the results. We conclude that our approach reduces the
low-latency challenge faced by most offloading models and im-
proves the successful completion rate of the function.
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1 INTRODUCTION

As computation-intensive Edge-Cloud applications grow in com-
plexity and scale, conventional resource provisioning and man-
agement become less efficient and more challenging. Serverless
computing emerges as a potential remedy by offering scalable and
cost-efficient solutions for executing Edge-Cloud applications. It
introduces numerous benefits, like automatic scaling, scale-to-zero,
reduced infrastructure management overhead, and innate reliability
and availability [11], positioning serverless computing as a highly
promising paradigm for the Edge-Cloud continuum [12]. However,
Edge-Cloud serverless applications, unlike their purely cloud-based
counterparts, function within a heterogeneous computing contin-
uum/spectrum [14]. In this environment, not all devices possess the
necessary computational power to perform intricate and resource-
intensive tasks, often on behalf of IoT or mobile devices. Computa-
tion offloading addresses the limitations of individual Edge devices
by distributing and balancing the computational burden across the
Edge-Cloud continuum. This enhances application performance,
prolongs device battery life, and reduces latency for users. Still,
determining what and when to offload is a complex issue, given
several factors that need to be considered, such as network condi-
tions, the computational capacity of the device, the requirements
of the application, and the cost of infrastructure (cloud) resources.

Serverless computation offloading: State of the art & limi-
tations.

The research community has begun looking into finding solu-
tions to better support serverless computing at the edge. Some new
frameworks that were more suitable for edge environments have re-
cently been proposed that leverage lightweight, functional sandbox
mechanisms to achieve isolation guarantees for task parallelism,
such as Faasm [16] and Sledge [8]. However, these solutions either
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work within a single edge node (e.g., [8]) or scale to multiple nodes
without considering geographical distribution (e.g., [16]). On the
other hand, a relatively large number of research efforts also work
on proposing solutions to place and manage serverless functions
and applications in the edge environment and consider their inte-
gration with serverless cloud services. They study optimal function
placement, intending to minimize the completion time of serverless
applications by making a trade-off between processing time and
communication overhead [6, 10].

The above approach relies on centralized decision components,
and serverless edge task scheduling is more challenging due to the
heterogeneous and resource-constrained nature of edge resources.
Other works (e.g., [15]) study architectures and algorithms for func-
tion placement and load distribution in decentralized Edge-Cloud
systems, which aims to address this problem by allocating admis-
sion, scheduling, and provisioning decisions[15][18]. However, re-
lying on existing cloud-oriented frameworks for actual function
execution may create some practical problems when running at the
edge.

Based on the above discussion, the existing work on serverless
edge computing mainly focuses on the design of static models
and needs to consider better the dynamic network environment
changes and resource-constrained situations during task scheduling.
However, it is crucial to fully evaluate the dynamic serverless edge
network environment in resource-constrained scenarios to make
scheduling computing tasks more adaptable to realistic scenarios.
This work fills this gap by considering proposed distributed task
scheduling schemes in dynamic serverless Edge-Cloud computing
networks.

Finding an optimal offloading policy in the Edge-Cloud contin-
uum is challenging due to the complex and dynamic system state.
The traditional methods are mainly based on heuristic algorithms
for one-shot optimization, which leads to performance degradation
in long-term operations. Therefore, we provide the optimal decision
of the function as a Markov Decision Process problem.

Contributions. In this paper, we introduce ATTENTIONFUNC - a
novel approach for distributed and decentralized function offloading
in the Edge-Cloud continuum, based on a new attention multi-agent
deep reinforcement learning (AM-DRL) method that we developed.
By exploiting AM-DRL, ATTENTIONFUNC dynamically determines
where to execute serverless functions (e.g., an Edge node or a in the
cloud) to optimize the function execution time (completion latency)
and the cost of its execution. The main contributions of this paper
include:

o A fully decentralized decision-making model for function of-
floading that enables modeling/representing globally optimal
offloading strategies in the Edge-Cloud continuum.

o A novel multi-agent offloading model, which represents the
function offloading based on Markov Decision Process (MDP)
with a goal to minimize the functions’ execution time (com-
pletion latency) and their costs. Moreover, formulating the
problem as MDP allows ATTENTIONFUNC to efficiently solve
it with deep reinforcement learning approaches, yielding an
improvement in the function’s completion latency of 16.5%-
44.2% compared to the state-of-the-art approaches.
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o An attention-based optimization mechanism for multi-agent
deep reinforcement learning, which allows the DRL agents
to reach a consensus by sharing only the minimal coordina-
tion information among themselves, leading to significant
reductions in communication and computation overhead
(27.8% reduction), while improving the function success rate
by 43.3% compared to the state-of-the-art approaches.

Outline. The rest of this paper is organized as follows. The
ATTENTIONFUNC architecture and usage overview are reviewed
in Section II. The ATTENTIONFUNC model is presented in Section
III. The details of the AM-DRL function offloading algorithm are
described in Section IV. The evaluation is presented in Section V.
The related work is presented in Section VI. Finally, Section VII
summarizes this paper and provides insights into possible future
work.

2 ATTENTIONFUNC ARCHITECTURE &
USAGE OVERVIEW

The main objective of the ATTENTIONFUNC framework is to facili-
tate decentralized and efficient serverless function offloading and
computation balancing in the Edge-Cloud continuum. It aims to dy-
namically ascertain the best location to execute serverless functions,
(e.g., on an Edge node or in the cloud), with a focus on optimizing
both the function execution time (completion latency), network and
computation overhead of the decision-making, and the associated
execution costs.

Figure 1 gives a high-level architecture and usage overview of
ATTENTIONFUNC framework. Each Edge node maintains a queue
of incoming requests for computation. This Edge Queue is used by
the user or an IoT/mobile device to invoke a serverless function,
which performs some computation on their behalf. Each Edge node
can receive the user request and needs to decide how and where
to execute a corresponding function. To this end, it coordinates
within its local Communication Group and if necessary triggers the
Function Offloading process. Conversely, to integrate with a cloud
provider, such as AWS, ATTENTIONFUNC expects typical APIs for
invoking serverless functions. Note that ATTENTIONFUNC does not
make any assumptions about the type or implementation of the
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Figure 1: The overview of the function offloading in Edge-
Cloud continuum.
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serverless function, but they need to be configured and ready for
execution. This means that ATTENTIONFUNC relies on the cloud
platform to provision, schedule and execute the function. However,
ATTENTIONFUNC framework makes sure that the results of the
function execution are eventually delivered to the calling Edge
node.

2.1 Functions Offloading & Decentralized
Decision-Making

Figure 1 (bottom-left) also gives a high-level overview of the main
steps of function offloading. As shown in the figure, an Edge node
(EN) requests a specific number of stateless functions at the time ¢
for the function x/,. Due to the limited computing power of devices
of ENs, it is impossible to process the entire function in a limited
completion delay. Many applications require real-time feedback,
i.e.,, VR/AR, and demand the device to provide sufficient comput-
ing power. However, the computing power of current devices is
insufficient. Therefore, we consider serverless architectures where
the cloud can initiate several stateless functions to handle subtasks
offloaded from ENs. The ATTENTIONFUNC decision-making algo-
rithm is deployed on each EN. First, the agent deployed on the node
obtains the entire network data, including the network status, func-
tional requirements, and the cost of performing the function. Based
on this data, the algorithm finds the optimal offloading decision,
given the task at hand. To adapt to the dynamicity of the environ-
ment, all EN offloading decisions interact in the communication
group and eventually find the globally optimal offloading decision
by integrating all information.

According to the offloading decision, the function x’, can be
processed in the Cloud or at the EN (step 1 in Figure 1). After re-
ceiving the request, the Cloud or EN launches several stateless
functions for the function according to the computation service
requirements (step 2 in Figure 1). Then the stateless functions con-
duct the function (step 3 in Figure 1), and we can calculate the
function completion latency and cost according to the function’s
requirement. After finishing the function, the Cloud returns the
results of the function to the device (step 4 in Figure 1).

2.2 Communication Groups & Attention
Overview

The Communication Group is a logical overlay on top of Edge-Cloud
infrastructure that facilitates information sharing between ENs. To
ensure that all offloading decisions are globally optimal, the Commu-
nication Group is introduced after each EN has made its offloading
decision based on locally observable information. During the infor-
mation interaction process, dynamic conditions such as serverless
functions arrival rate, computing power, network, and other factors
affect user states, offloading services are not necessary for everyone.
Therefore, we introduce an attention mechanism to identify which
ENs’ information has positive significance for decision-making and
keep these ENs in the Communication Group, to reduce the waste of
communication resources and improve decision-making efficiency.
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3 ATTENTIONFUNC MODEL
3.1 Infrastructure model

A serverless edge-cloud continuum architecture consists of a num-
ber of ENs and clouds. Without loss of generality, a function is
generated on each EN at time t. A control centre is deployed on
each EN, where the ENs can communicate with each other and
then make a function offload decision based on the current state.
the ENs are connected via a network to a cloud data centre with
computing power and the function can be offloaded to the cloud
data centre for execution. Moreover, we define a set of time slots
T ={1,2,...t} to indicate the time epochs.

Function: We defined x/, as the function generated at EN at
time t. x,tn = {zm, km, Tm}, where z,, is the required CPU cycles,
km is the total CPU requirements, and T, is the maximum func-
tion completion time acceptable to function x7,, respectively. For
simplicity, the functions in this system are minimum function units
for offloading.

EN: This system includes a set of M = {1,2,...m} of EN with
the computing capability f;,, which depends on how many stateless
functions are deployed on the EN. We assume that only one function
xL is generated on the EN at each time t. The system can make
offloading decisions for the function x7, based on the current state
after communication. Some functions are sent to the edge queue and
wait to execute. Therefore, we defined wy, as the average waiting
at the edge queue of EN m.

Cloud: In contrast, others are offloaded to the cloud for execution
over a fibre optic network. The cloud provides extensive computing
resources, while the EN has low communication latency and high
bandwidth. We defined f: as the computing capability of the cloud.
The Cloud consists of one or more Cloud servers, each running
multiple instances of stateless functions for processing functions.
Therefore, there are no waiting time in this case.

3.2 System model

3.2.1 Latency of uploading. We consider that EN m generates la-
tency sensitize computational function x7,. The function x%, needs
to upload the relevant information to the EN before it can be ex-
ecuted and this part of the transmission delay needs to be taken
into account in the completion delay of the function. We define r*#
as the transfer rate of the upload, z;, as the required CPU cycles
that need to be uploaded, and r*? as the average upload rate from
devices to the EN, which can be calculated by the following formula:
D) = 2.

Moreover, for the time to start the cloud or edge container for
function execution dS!%"*. The time depends on the container mem-
ory, but not the input required CPU cycles and varies for a cold start
or warm start. Therefore, we define D397 (¢) as the start latency for
function x%, which can be computed as: D3¢ (t) = DL, (1) +d5tart.

3.2.2  Latency of functions executed at EN. For the EN execution
approach, functions are briefly stored in a queue and processed in
First In First Out (FIFO) order. The functions’ execution latency is
d,tn = ]}—Z where k;, is the total CPU requirement of the function

x!,, and fy, is the service rate of the Stateless functions of the EN
m. In addition, we define Wy, = Wy, / fi as the average wait latency
in the queue of EN m during time episode T, where wy, is the total
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CPU requirement of the function queue at EN m. Therefore, the
process latency EN can be expressed as: Z),ln(t) =dl, + W

3.2.3  Latency of functions executed at Cloud. In the cloud approach,
the device uploads the input data to a cloud service. This upload
triggers the execution of the stateless function that performs the
data processing function.

For the offload execution case, the functions’ execution latency
is DEX(t) = km/fe, where f; is the service rate of the Cloud.For
the transmission, the data transmission rate r,t,f’t from the EN in
the wireless group based on the transmission power consumption
p,tlr, it’s calculated as follows:

PP

trit _ ptr
rm =D log2(1+02+1tr

1
where b" is the group bandwidth, h’} is the group gain, 2 is the
noise variance, and I*" is the Signal Interference plus Noise Ratio
(SINR). Therefore, function xZ,’s completion latency is DI (t) =
Wi /rit where wp, is the required CPU cycles of function xk.

For the execution result return, the communication latency D},¢
can calculate as D¢ (1) = ¢/ r,rle’t, where c;;, means the required
CPU cycles of the execution result. The communication rate from
the Cloud and EN m at time ¢ can be calculated as r,"! = w"¢loga (1+
pre - hre/(o? +17°)), where "¢, pié, hi¢, and I"¢ are the group
bandwidth, transmission power consumption, group gain, the Sig-
nal Interference plus Noise Ratio (SINR) during the result return,
respectively. In addition, the network is dynamic, we consider an
idle latency Di9€(t) during the function x%,
the unstable network at time .

To sum up, the function completion latency Dy, for the function

can be expressed as

execution caused by

t

Xm

T
D = ) D (t) + DL (1) + D (1) + Dyt (1) + D (1) (2)
t=1

3.24 Cost of functions executed at Cloud. Because the stateless
functions can help to operate the function, a shorter function com-
pletion time can be obtained. However, the commercial serverless
architecture (i.e., AWS and Google) generally utilizes serverless
architectures, where prices are determined based on the amount
of computing resource requirement. In addition to being more
cost-effective for certain types of services, this setup simplifies the
deployment process and provides better scalability [4]. That is if
the unit cost to use one computation resource is p and there are
km computation resources are requested by the function x%,, the
computing cost is given by p - kp,.

In conclusion, there is a trade-off P,;, between the function com-
pletion time and the computing cost: Py, = w1p - ki + @2Dm, where
0 < w; <1land0 < wy < 1 are set as the weights of probability. To
balance this trade-off, the EN decides whether to request stateless
functions or not.

3.3 AtTENTIONFUNC Function Offloading
Model

Next, we define the function offloading model and express it as
Markov Decision Process problem. In the Markov Decision Process
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problem, the agent conducts successively a specific action to mini-
mize the cost under the defined constraints. That is, we consider
each EN to ack as an agent, which decides whether to offload func-
tions or not at time ¢ in order to minimize the computing cost
and the function completion latency.

At the beginning of each time slot, the agent observes environ-
ment state S. Then the agent chooses an action A for the function
when there is a newly arrived function to be processed. The ob-
served state and the selected action will result in a reward R for
the function x?,. Next, the three elements of the MDP problem will
describe as follow.

State space The state space S is defined as S = {x%,, W, ttm, rhet
,t,:’t,fm,fc}, where x!, = {Tyn, km, zm }-

Action space Each Agent (EN) can make the offload decision
for each function. Thus, we can define the action space A = {a; €
{0,1},t € T}. a; = 1 means that execute the function x%, at EN, and
vice versa.

Reward space To minimize the computing cost, the cost func-
tion R(S, A) is defined. The computing cost is proportional to the
computation resource requirement and the completion latency of
function xﬁn. Hence, the reward can be defined as

R(S,A) =a; - DL (1) + |1 — as| - Py

r

®)

3.4 Optimization formulation

The average computing cost Cp, for the function x’, can be defined
as

t
. 1
Cm = lim - ; E[R(st,ar)] @)
where E[-] denotes the expectation of a random variable, s; and a;
denote the state and action at time ¢, respectively. Therefore, the
optimal objective of this problem can be express as

argmin (s 5\ Cm (5a)
$.t.C1: Dy, < Ty, Vm e M (5b)
C2:kpm <mVme M,VteT (5¢)
C3:a; € {0, 1}, are A (Sd)

where 7% (s¢, ar) is the optimal stochastic policy that implies the
probabilities of choosing a specific action at each state.

4 AM-DRL FUNCTION OFFLOADING
ALGORITHM

Each EN has an attention mechanism, communication group, and
actor-critic network. First, we consider the partially observable dis-
tributed environments where each EN agent m (the agent of initiator
m) receives local state s, at each time slot t,¢ € 77, the ActorNet
network takes local states as input and extracts a hidden layer as
thought which encodes local states and action intentions, repre-
sented as H?, = p1. The attention mechanism decides whether an
EN must collaborate in each episode 7 based on thought. If needed,
it initiates a communication group and chooses collaborators.
The attention mechanism determines and maintains the com-
munication group within episode 7°. The communication group
communicates with other agents in initiator m’s communication
group, inputs their ideas (local states and action intentions), and

5
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Algorithm 1: Attention Multi-agent Deep Reinforcement
Learning offloading method
Input: 641, OH2, OF, 0°, 62, 69 and 6P for attention
mechanism, y for the target network, @ and f for
PER method.
Output: Function offloading decision
Initialize the queue U and the replay buffer D

[

2 for episode = 1, - - -, episode,, ,, do
3 Initialize system environment and obtain state s;
4 Choose action a; ~ pg(atl|s;) for each Agent
5 Get thought H, = p1 (st,; 01)for each initiator m
6 Each agent m decides whether to initiate
communication based on H, every 7~ time slot
7 Integrate the thought in communication group i
8 form=1,---,Mdo
9 Obtain reward r” based on ail,, and get new
observation s;4+1
10 Get action for iifn = pp (HL,; 02) in initiator m’s
communication group C
1 Store (H},AQL) in U
12 end

13 Compute AQ by (6)
14 Update the attention parameter 6 by (7)

15 Store transition (ay, ¢, ¢, st+1, C) in D;

16 Sety =r+yQH (st+1, at+1)|a}:yj(sj)

17 for each gradient step do

18 Update Actor, Critic and target network by using
(8)-(13)

19 end

20 end

outputs the integrated thoughts to lead the agent’s next action
intention. By exchanging local observational knowledge and encod-
ing action intent in a dynamic group, agents may associate global
environmental forecasts, assist other agents, and collaborate to
make action intention judgments.

Lastly, Deep Neural Networks generate offloading actions (DNN).
It generates estimated Q(s;, a;) from the historical transition. The
agent may observe the state s; from the environment, pick an action
at according to the policy 7 (s, as), and produce an instantaneous
reward r;.

4.1 Attention mechanism

Our attention mechanism cannot observe global information, but it
can encode observable areas and action intentions to assess whether
agents need to offload services. In particular, the attention mecha-
nism is an RNN network that takes the hidden state of the previous
step and the agent’s local observations and actions as input, and
the output can be seen as a classifier to evaluate whether it is in-
corporated into subsequent collaboration. Because collaboration
policies take time to work, there is no need to take care at every
time step to determine whether users participate in collaboration.
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Figure 2: AM-DRL framework for the function offloading.

During the experiment, we updated the communication group at a
specific time. Algorithm 1 shows the technique pseudo-code.

4.2 Communication group

As the user’s function is dynamic, maintaining active contributors
in the communication group reduces computation dimension and
changes system design. Hence, a communication group integrates
all agents’ input to define the communication group. LSTM unit
09 is the communication group. Each agent partially observes the
environment, and the communication group can let agents share
knowledge for better function offloading decisions.

A user who joins numerous initiators’ communication groups
acts as a bridge for information sharing. Assume initiators a and b
successively pick user k. The communication group integrates their
thoughts: {H, 7:{]3} = g(HL, 7—[15) User k connects with b’s
group: {H!, ,.,7:113,} = g(H?, (H]:,) User k helps groups cooper-
ate by spreading the notion. 6” parameters the attention mechanism
for each initiator m and communication group C. One critic network
0¢ with an attention mechanism for each initiator m is trained. The
integrated notion is (f(,% which is merged and supplied to the next
attention mechanism policy network. The attention mechanism pol-
icy network produces the action intention ail, = u2(HZ,, HL,; 042).
We average the Q-value difference between independent acts inten-
tion ai; and cooperative actions:

1 . -
AQ7, = 1 (2 Qlsinaiile) = ) Q(siaiile™)) ()
ieC ieC
We store (AQ?,, H!) into a queue U, and min-max normalize
AQ. The binary classification tag is AQ € [0, 1]. Update 6” in the

loss function:

L(6P) = —AQL,log(p(Him|6P)) — (1= A0k og(1—p(Hin|60P) (7)

4.3 The training process

For actor-critic network strategy enhancement, we use the Actor
network p(6) to produce the next state action p(a;4+1|0#) instead of
picking the action with the biggest Q-value in the action space. The
greedy technique cannot discover the global maximum Q-value
in such a multi-dimensional action space since it must find it in
every step. We also use the Critic network Q(0) to critique the
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policy based on the predicted Q-value Q(s;, a;|09) ~ Q(s;, a;) via
a manner similar to supervised learning:

Vol () = Es,a,~D [Vou(ar|s:) VOH (st, ar) |a:p(s,)] (®)

where D is the experience replay memory containing {s;, as, ry,
st+1, C}, and stores the transitions of all agents. The action value
function can be updated as follow:

L(9) = Est,a,,r,,sHl,C[(Q#(st) as) — y)]z %)

wherey =r + {yQ”' (S¢+1, at+1)}|a,+1:y(s,)- The Critic network’s
evaluation of the Actor’s forward transfer action a; can update the
Actor network p(6). Hence, the Actor network is updated using
the policy gradient iterative formula:

(10)

We present two target networks 60+ and 69" for Actor and Critic
networks to restrict target value change pace and increase learning
stability. Because the Critic network O(s, a|09) calculates the goal
value r; +y, Q(s¢+1, H(St+1) |61)|69), Q-value update shocks. The
target network changes the weight by slowly following the online
network, 0’ «— 7+ (1-1)0', 7 < 1.

The Temporal-Difference Learning (TD-error) i/, which approxi-
mates Agent’s ability to learn from current experience, is stored as
Q-value. It may be stated as follows:

Voupt = Va, Q(s1.2:109)5, =5, a,=p(s,)

(11)

Finally, apply the following update to the Actor and Critic net-
works, where a9 and a* are the network learning rates:

69 — 09 + a9 - VuL2(69), 0F — OH + o - O*

¥ =retymax 0 (seer, arer) = Q¥(s6,20)aguy=p(sn)
1+

(12)
The target Critic network and target Actor network are updated

according to the following way to step-by-step track the online
Critic network and Actor network:

09 — 092 + (1-009, 0" — 0"+ (1-0)0*  (13)

where 7 < 1 is the temperature parameter.

5 EVALUATION

This section first describes the simulation settings. Then, we com-
pare it with other existing function offloading algorithms from
multiple dimensions.

5.1 Experiments Setup

A comparison of several methods is conducted using Pytorch 1.3
framework. Let’s assume an Edge-Cloud continuum function of-
floading scenario with 150 ENs. We assume that ENs are randomly
distributed over a 350m x 350m physical region throughout the
experiments. According to [17], the computation capabilities of
each EN f;, are different, evenly distributed between 0.5 and 3.5
GHz, and the computation capabilities of cloud f; range between
31.5 and 51.5 GHz.

In our experiments, we compare ATTENTIONFUNC’s AM-DRL
with the following four state-of-the-art function offloading meth-
ods.

o Random: Each function is randomly assigned to the EN queue
and cloud.
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o Greedy: Each function is greedily offloaded to EN and cloud
based on the estimated time.

e MADDPG [9]: A function offloading based on multi-agent
deep deterministic policy gradient is commonly used in re-
cent research for offloading.

e ES-DRL [19]: A distribution function offloading method based
on experience-shard deep reinforcement learning.

5.2 Performance analysis of ATTENTIONFUNC

approach
= ES-DRL
0 DDPG
P —/>— Greedy
£
g
g
w
=
5
$
o}
<

10 20 30 40 50
Number of ENs

(@)

Function Success Rate
°
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Number of ENs

(b)

Figure 3: The number of ENs with respect to: (a) Average
Latency; (b) Function Success Rate.

5.2.1 Performance analysis based on Different Numbers of ENs. Fig.
3(a) illustrates the performance of average latency for Random,
Greedy, DDPG, ES-DRL, and the proposed algorithm, AM-DRL,
with different numbers of ENs. We take the average value after all
experiments are executed more than 10 times. As the amount of ENs
grows, the average function completion latency of each algorithm
increases. This is because as the number of ENs increases, gener-
ated functions within the Edgo-Cloud continuum system increase
accordingly.

Moreover, we look at how the number of ENs affects the function
success rate of these computation offloading algorithms. In Fig. 3(b),
as the amount of ENs grows, the normalized function success rate of
each algorithm decreases. The function success rate of Random and
Greedy tends to decrease linearly as the number of ENs increases.
Specifically, the function success rate of DDPG, ES-DRL, and our
algorithm shows a slow downward trend. It can be draw that our
proposed method based on computation offloading scheme is near-
optimal and reduce the function success rate of the whole system
by 12.7% and 0.9% compared with DDPG and ES-DRL, respectively.
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Figure 4: The deadline with respect to: (a) Average Latency;
(b) Function Success Rate.

5.2.2  Performance analysis based on Different Deadline of func-
tions. Fig. 4(a) shows the function completion latency for different
deadline of different strategies. For the purpose of comparing the
effects of different deadline, the deadlines were set from 1.0 to 2.2
seconds. As the deadline increases, the function completion latency
increases for the five offloading strategies. It is noteworthy that our
proposed offloading scheme is optimal no matter what deadline is
set. This is because as the deadline increases, more functions are
generated in the system.

In addition, Fig. 4(b) shows the functions’ success rate with the
increase of functions’ deadline, the success rate of Random and
Greedy increases sharply due to the increase of functions’ deadline,
while the success rate of DDPG, ES-DRL and AM-DRL is relatively
stable. This is because with the decrease of the deadline, local
and edge gradually lack the ability to deal with functions, and the
proportion of failed functions increases. It can be seen from Fig. 4(b),
the proposed algorithm keeps a good profit when the functions’
deadline is small, which shows that the success rate of the function
is not affected by the deadline. Therefore, it can be inferred that
the proposed algorithm can deal with computing functions with
latency-sensitive, which is more suitable for practical use.

5.2.3 Computational overhead and trade-offs. Fig. 5(a) illustrates
the average latency impact of five algorithms with different required
CPU cycles. When the required CPU cycles increase, the increase
in average latency can be verified. This is because the requirements
for computing power are not strict for light loads, while heavy
loads require relatively large computing power.

In addition, Fig. 5(b) shows that as the CPU cycle requirements
for the function increases, the success rate of all five methods de-
creases. This is because as the CPU cycle required for the function
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Figure 5: The required CPU cycles with respect to: (a) Average
Latency; (b) Function Success Rate.

increases, the resources available for local and edge allocation grad-
ually decrease, and the completion time of the function exceeds the
deadline, resulting in a gradual decrease in the success rate. From
the figure, it can also be seen that when the CPU cycle required
by the function is large, the proposed algorithm maintains a good
success rate, indicating that the success rate of the function is less
affected by the CPU cycle required by the function.

6 RELATED WORK

As latency-sensitive applications motivate the migration of com-
putation functions from the cloud to edge locations, interest in
transferring FaaS solutions to the edge is also increasing. One pos-
sible option is reusing open source FaaS options, such as Apache
OpenWhisk [1], Knative [2] or Kubeless [3]. Other works focus
more on improving some aspects of FaaS to adapt existing solu-
tions to edge-specific issues, such as [13] which builds an exten-
sion over OpenWhisk. Here authors identify problematic areas in
serverless edge scenarios based on diverse use cases. They touch
on issues related to function offloading based on type (i.e., latency-
sensitiveness, computation or data-intensiveness), collaboration
among edge nodes, data or state locality, and handling.

Some studies have achieved performance optimisation through
function offloading in Edge-Cloud continuum scenarios, for exam-
ple, an algorithm for dynamically offloading serverless functions
is proposed in [7], a work that focuses on efficient partitioning of
serverless applications and a combination of functions to improve
performance. A performance optimisation framework is proposed
in [5] for serverless applications on edge cloud platforms, using
regression techniques to make predictions and dynamically decide
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whether to process serverless functions on the edge or on the cloud.
However, the drawbacks of this supervised learning approach are
the lack of large amounts of labelled data and long decision times.
Therefore, some research introduces an unsupervised learning-
based DRL algorithm to develop function offloading policies in the
Edge-Cloud continuum scenario without labelled data and shorter
decision times. For instance, Yao et. al [19] proposed a function
offloading algorithm DRLFO with a deep reinforcement learning
algorithm based on the actor-critic framework.

Existing research has considered fully-centralized control of
resource provisioning and allocation. However, such solutions re-
quire significant communication and coordination overhead in a
distributed Edge-Cloud continuum scenario [18]. Instead, we con-
sider practical approaches that require minimum coordination. Our
starting point is the efforts related to distributed function dispatch-
ing. For instance, Gabriele et. al [15] presents for the first time a
distributed architecture Serverledge to support collaborative sched-
uling of edge nodes with each other, providing the basis for a dis-
tributed and collaborative computational offloading approach.

The above research has two drawbacks. One is that some studies
do not consider competition or cooperation in offloading multiple
functions in the Edge-Cloud continuum environment. Secondly,
these efforts do not make full use of the distributed characteristics
of edge computing and ignore the communication delay caused by
agent information interaction. In contrast, we study the function
offloading problem in the Edge-Cloud continuum environment, in
which finer-grained functions are used as the basic unit of func-
tion offloading. A common feature of the above related work is
performance optimization to reduce latency and cost. We propose
a distributed function offloading method based on attention multi-
agent reinforcement learning, which allows EN to interact with the
most valuable information and helps to generate a real-time and
globally optimal function offloading strategy.

7 CONCLUSION

In this paper, we study the function offloading problem in the mul-
tiple EN dynamic Edge-Cloud continuum environment. Our objec-
tive is to minimize the average system latency and cost. To achieve
the optimal problem, we propose an attention multi-agent deep
reinforcement learning algorithm, which allows ENs to transmit
valuable information among their communication group thus ob-
taining the global optimal offloading strategy. The proposed method
reduces communication overhead in a dynamic edge cloud envi-
ronment, promotes collaborative decision-making, and improves
the effectiveness and rationality of collaboration. Numerical results
show that the proposed AM-DRL method is effective in offloading
function edge computation and is superior to the baseline algo-
rithm.

As future work, we plan to extend ATTENTIONFUNC to also sup-
port decentralized and efficient function offloading and computa-
tion balancing for serverless applications, based on function compo-
sition and function chaining. We also intend to extend our approach
to account for the mobility challenges that are typically encountered
when performing computation balancing in real-world Edge-Cloud
scenarios.
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