# Integrating Existing IoT systems: LA smart parking use case

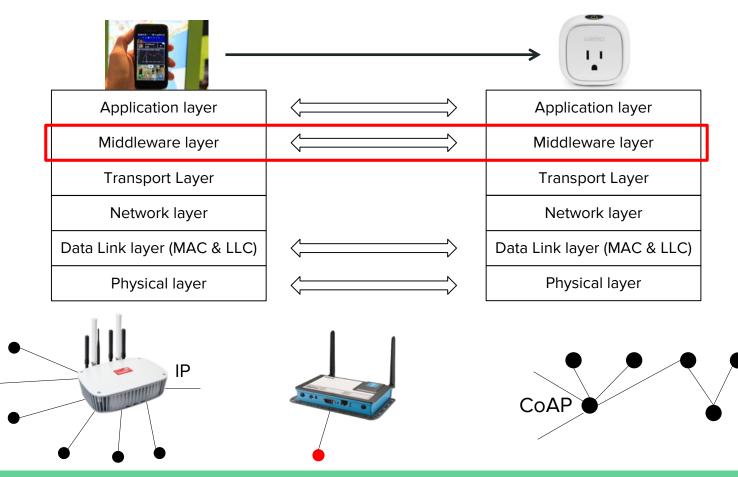
### By Georgios Bouloukakis

boulouk@gmail.com

Joint work with: Pierre-Guillaume Raverdy, Patient Ntumba, Nikolaos Georgantas & Valerie Issarny

Feb 2020, Los Angeles City Hall

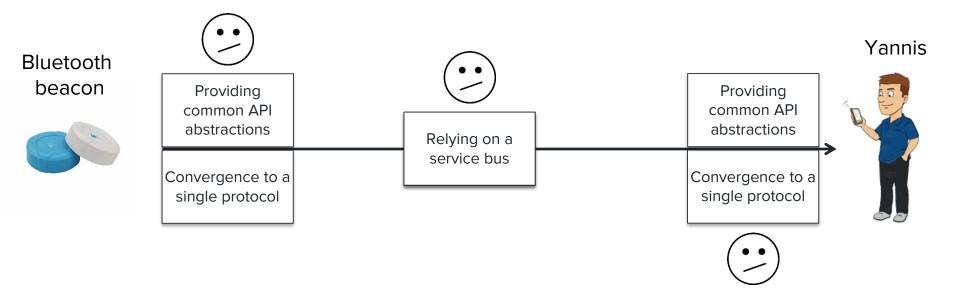



### Enabling Data Exchange in IoT Smart Spaces



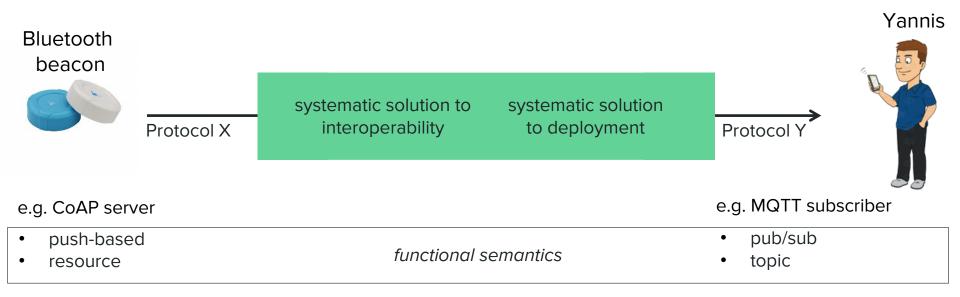
"what is the occupancy of the room 2065?

"decrease the temperature of those rooms with occupancy above 50% of their capacity?"


### IoT heterogeneity at multiple layers



### Middleware protocols in the mobile IoT



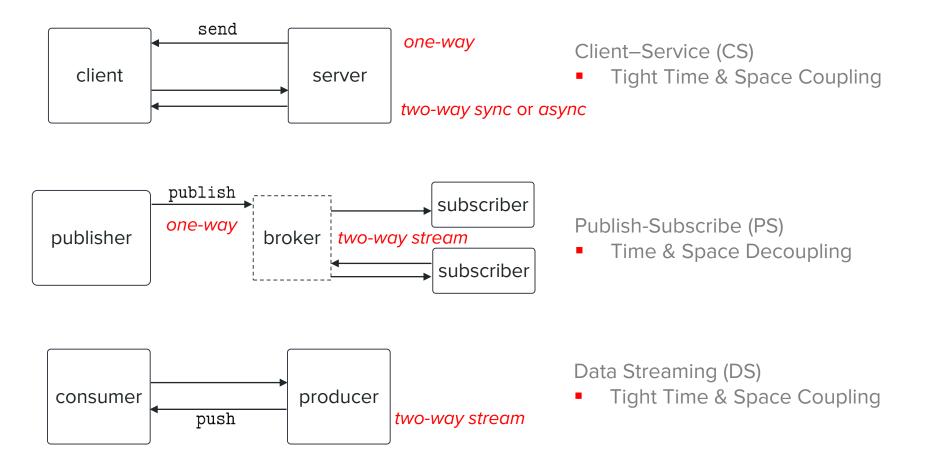

### Heterogeneous interconnections in the IoT



#### How to enable interconnections in the mobile IoT ?

## Our proposed solution




#### Automated synthesis of interoperability artifacts (mediators):

• enables functional middleware-layer interoperability

#### Automated placement and deployment at the Edge:

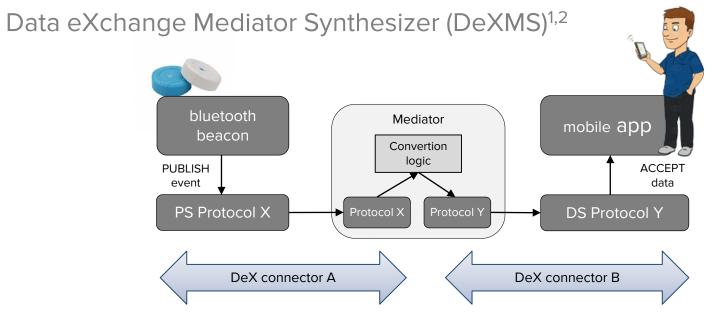
• enables the deployment of interoperability artifacts at the Edge

### Models for core interaction paradigms



### Data eXchange (DeX) connector model

Our generic connector defines 4 basic interaction types:

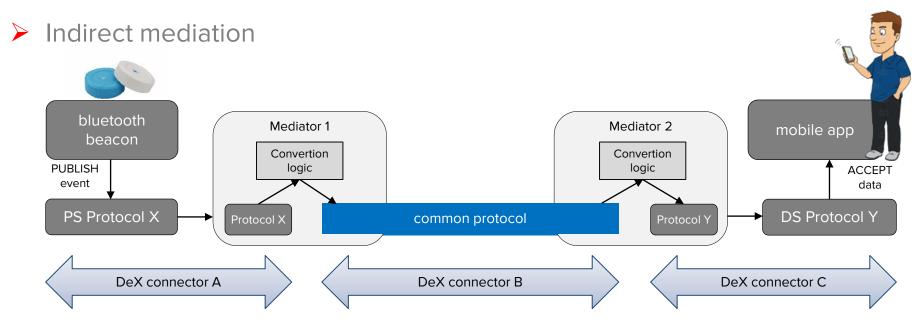



each interaction is represented as combination of **post** and **get** primitives

**post** and **get** primitives abstract CS, PS, DS and TS primitives

We rely on the DeX abstraction to introduce our middleware protocol interoperability solution

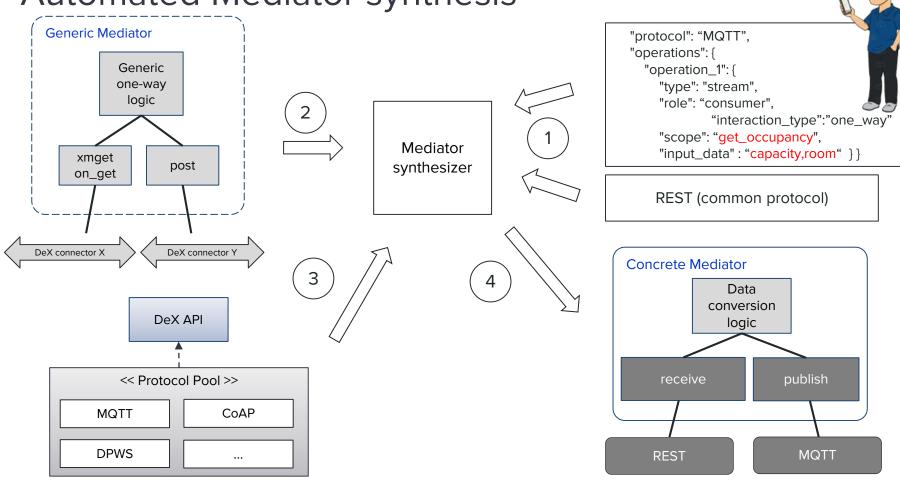
# Our middleware protocol interoperability solution (1/2)




- Mediator architecture: relies on DeX for automated Mediator synthesis
- Primitives & data conversion between the Things' protocols

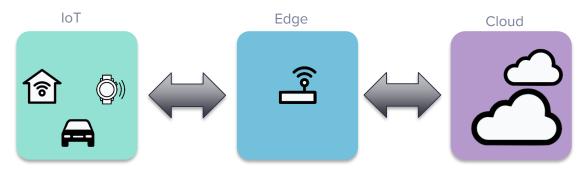
#### Direct mediation

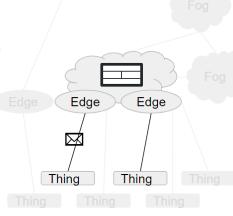
- <sup>1</sup>G. Bouloukakis et al., FGCS, 2019
- <sup>2</sup>G. Bouloukakis et al., ICSOC, 2016


### Our middleware protocol interoperability solution (2/2)



Primitives & data conversion between the common protocol and the Things' protocols


A universal way to describe the Things' I/O required


### Automated Mediator synthesis



### The Where and How Problem

- Where to place mediators: Cloud, Edge, and Fog Computing
- Obvious solution: The Edge and Fog
  - Things push data to the Cloud to be analyzed (e.g., 4k camera)
    - Use artifacts at the Edge/Fog to filter these data
  - Timeliness, data privacy, etc





- Work in progress:
  - Systematic solution to automate the deployment of mediators at the Edge
  - Utilize mediators for data filter for forwarding on Cloud

### Mediators at the Edge

Docker

- Delivers software in packages called containers.
- DeXMS provides mediators as Dockerfiles.
- A Dockerfile produces a Docker image.

### Ansible

- Automation tool to perform installation, maintenance, or monitoring operations.
- Used to automate the installation of the smart space infrastructure as well the DeXMS service.

### Ansible

**DeXMS** 

- Triggers the DeXMS service to generate the required Mediator containers.
- Can be used to monitor nerworks and services.

### **Kubernetes**

- Container-orchestration system for automated deployment, scaling, and management.
- Supports the automated deployment of mediators.

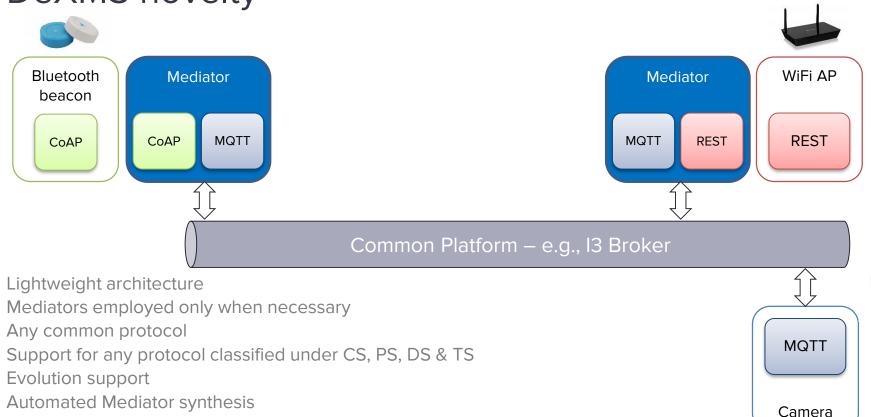


### Μ

### The How Problem

- *How* to place mediators?
  - Related Problem: Operator Placement
  - Compute a "cost space"<sup>1</sup> to represent *Things* and *Physical Nodes*
    - E.g., a smart building with heterogeneous Things
  - Place mediators in an optimized manner

**Criteria**: distance, energy, bandwidth, latency, availability, etc


**Optimization techniques**<sup>2,3</sup>: constraint programming solvers, heuristics, linear programing, genetic programming, etc.

Μ

<sup>1</sup>P. Pietzuch et al., ICDE, 2006
<sup>2</sup>V. Issarny et al., ICDCS, 2019
<sup>3</sup>A. Chio et al., ARM, 2019



# **DeXMS** novelty



- 75-96 % person-hours reduction when using DeXMS
- Work in progress: enabling application-layer data exchange<sup>1</sup>
- <sup>1</sup>R. Yus et al., Buildsys, 2019

 $\geq$ 

 $\succ$ 

 $\succ$ 

 $\succ$ 

 $\succ$ 

 $\succ$ 

## LA Smart Parking use case (1/4)

- Heterogeneous services/devices providing parking information:
  - Several middleware protocols employed REST, Websockets, etc
  - Different data models and schemas created my different stakeholders
  - Different data formats used -- JSON, XML, etc

| 🖯 Data                                                                                                          |                                            | 🖯 Data                                                                                                            |                                            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| LADOT Parking Meter Zones                                                                                       |                                            | LADOT Parking Enforcement Districts                                                                               |                                            |  |  |  |
| City of Los Angeles Hub   lahub_admin                                                                           |                                            | City of Los Angeles Hub   lahub_admin                                                                             |                                            |  |  |  |
| Parking meters are divided into zones for maintenance and management of the meters. LADOT manages approximately |                                            | LADOT parking enforcement districts are the regions of the city that were established for efficient management of |                                            |  |  |  |
| Type: Feature Layer                                                                                             | <b>Rows</b> : 71                           | Type: Feature Layer                                                                                               | <b>Rows</b> : 5                            |  |  |  |
| Last Updated: Feb 20, 2020                                                                                      | <b>Tags</b> : NavigateLA, Los Angeles, LA, | Last Updated: Feb 20, 2020                                                                                        | <b>Tags</b> : NavigateLA, Los Angeles, LA, |  |  |  |

### LA Smart Parking use case (2/4)

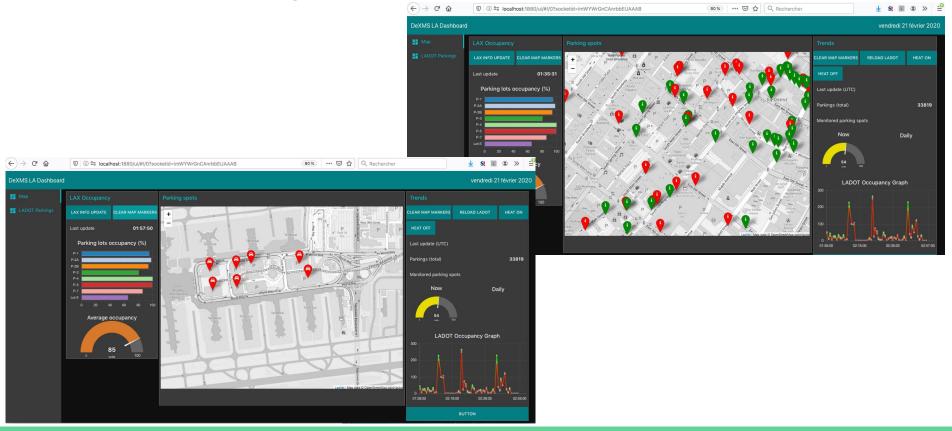
- We leverage the I3 platform to build the LA smart parking application
- We assign different I3 subscribers to different regions of LA
- This enables extensible app development
  - relying on single protocol, data format and data representation
- Data from heterogeneous services/devices?



## LA Smart Parking use case (3/4)

#### We rely on Node-RED to build and demonstrate our application




| LA Parking demo             | Dashboard       | LADOT Parking Init | LADOT/LAX Setup |   | + = | 音 debug |       | i # 🔟       |                             |
|-----------------------------|-----------------|--------------------|-----------------|---|-----|---------|-------|-------------|-----------------------------|
| 13 LaxParking     connected | ParkingMarkerld | ParkingMarkericon  |                 |   |     |         | LADOT | T all nodes |                             |
| Ocnnected                   |                 | Issue chart data   | ar : loon color |   |     |         |       |             | T<br>S<br>Pr<br>R<br>H<br>H |
|                             |                 |                    | Sue daily data  | D |     |         |       |             |                             |
|                             |                 |                    |                 |   |     |         |       |             |                             |

> We use the DeXMS service and the Node-RED palette to generate mediators for heterogeneous services/devices

|                        | Operation 1                      |
|------------------------|----------------------------------|
| DL Files Create De     | Role :                           |
|                        | CONSUMER -                       |
|                        | CONSUMERS                        |
|                        |                                  |
| т                      | Operation name :                 |
|                        | LADOT_Parking_Meter_Occ          |
| Type :                 |                                  |
| /ICE -                 | Quality of service :             |
| 2                      | UNRELIABLE -                     |
| col :                  |                                  |
| r •                    | Type :                           |
|                        | ONE WAY                          |
| Address :              |                                  |
| //data.lacity.org      | Operation Scope                  |
| //uata.iacity.org      |                                  |
| lumber :               | Name :                           |
| lumber :               | LADOT_Parking_Meter_Occ          |
|                        |                                  |
|                        | Verb :                           |
| Generate new DeX-IDL   | GET                              |
|                        |                                  |
|                        | Uri :                            |
| peration 1             | resource/e7h6-4a3e.json          |
| ole :                  | resourcerento-4ase.jour          |
| CONSUMER -             |                                  |
|                        | Input Data                       |
| peration name :        | Context :                        |
| ADOT_Parking_Meter_C   |                                  |
| ADOT_Parking_weter_c   | BODY                             |
| ouality of service :   |                                  |
|                        | Media type :                     |
| JNRELIABLE -           | JSON -                           |
|                        |                                  |
| ype :                  | Simple input Data 1              |
| ONE WAY                | Name :                           |
|                        | spaceid                          |
| Operation Scope        | opacciu                          |
| Name :                 |                                  |
| LADOT_Parking_Meter    | Minimum occurence :              |
| Looo _ r and ig_weter  | ONE                              |
| Verb :                 |                                  |
| GET                    | Maximum occurence :              |
| GET                    | ONE                              |
|                        |                                  |
| Uri :                  | Type :                           |
| resource/e7h6-4a3e.jsc | STRING •                         |
|                        | UTRING 1                         |
|                        |                                  |
|                        | Add Blook date Add Blook date    |
|                        | Add Simple data Add Complex data |
|                        |                                  |

### LA Smart Parking use case (4/4)

Node-RED apps plotting MQTT-compatible data



### Software artifacts and adoption

### > DeXMS:

- Mediator generator: <u>https://gitlab.inria.fr/dexms/service</u>
- Eclipse plugin for defining Things' DeXIDLs: <u>https://gitlab.inria.fr/dexms/dexidl</u>
- Web interface: https://sed-webtests.paris.inria.fr/dexms-service-1.2.0-SNAPSHOT/
- Demos:
  - Mediator generation: <u>https://youtu.be/UgfM3810RS8</u> (ICSOC 2016)
  - Web console installation: <u>https://youtu.be/IGjZ5u3QYOw</u> (ICWE 2018)
  - Fire Detection scenario: <u>https://youtu.be/SJeiqJkBhls</u> (ICWE 2018)
- DeXMS is used as a core component in H2020 CHOReVOLUTION, UCI TIPPERS and Inria/UCI MINES and I3 projects.



### **Publications**

- G. Bouloukakis, N. Georgantas, P. Ntumba, V. Issarny, "Automated Synthesis of Mediators for Middleware-layer Protocol Interoperability in the IoT", FGCS Journal, 2019.
- R. Yus, G. Bouloukakis, S. Mehrotra, N. Venkatasubramanian, "Abstracting Interactions with IoT Devices Towards a Semantic Vision of Smart Spaces", ACM Buildsys, November 2019, New York, USA
- V. Issarny, B. Billet, G. Bouloukakis, D. Florescu, C. Toma, "LATTICE: A Framework for Optimizing IoT System Configurations at the Edge", ICDCS 2019, July 2019, Dallas, Texas, USA
- A. Chio, G. Bouloukakis, C.H. Hsu, S. Mehrotra, N. Venkatasubramanian. "Adaptive Mediation for Data Exchange in IoT Systems", 18th ARM Workshop 2019, Davis, CA, USA

# Questions?

https://gbouloukakis.com boulouk@gmail.com

