
Analysis of Timing Constraints in Heterogeneous
Middleware Interactions

Ajay Kattepur1, Nikolaos Georgantas2, Georgios Bouloukakis2 &
Valérie Issarny2

1PERC, TCS Innovation Labs, Mumbai, India
2MiMove Team, Inria Paris-Rocquencourt, France

ICSOC, Goa, November 2015

1

Motivation

Crowd sourced
 Information

Mobile Subscribers Connect/Disconnect

Traffic Cameras Google “real time” traffic

post post post

get get get

What is the current traffic congestion on Mahatma Gandhi Road ?

(lease)

(timeout)

Storage with limited validity “latest report”

2

Motivation

Future Internet Application Middleware:
Web Services – Client-Service (CS)
Data Feeds, IoT – Publish-Subscribe (PS)
Crowd-sourcing – Tuple Spaces (TS)

eXtensible Service Bus (XSB) Middleware – unifying
connector for CS|PS|TS

Timing Analysis of Interactions:
Data validity constraint with lease parameter
Intermittent subscriber availability with timeout parameter

System designers can tune timing parameters for Transaction
Success and Latency

3

Outline

1 eXtensible Service Bus (XSB)

2 Timing Analysis

3 Timed Automata and Uppaal

4 Experimental Results

5 Conclusions

4

Middleware Interaction Paradigms

Client Server

send

receive

Publisher Broker

Peer

Peer

publish

subscribe

retrieve

retrieve

Peer Tuple
Space

Peer

Peer

out

out

read

take/read

Client–Service (CS)
Tight Time Coupling
Tight Space Coupling

Publish–Subscribe (PS)
Time Decoupling
Space Decoupling

Tuple Space (TS)
Time Decoupling
Space Decoupling

5

XSB Model
eXtensible Service Bus (XSB) Middleware Connector1

Primitives Arguments
post mainscope, subscope, data, lease
get ↑mainscope, ↑subscope, ↑data, timeout

Functional and non-functional (timed) behavior of CS|PS|TS
interactions 2

Native Primitives XSB Primitives
CS send(destination, operation, message) post(destination, operation, message,

lease(0))
receive(↑source, ↑operation,
↑message, timeout)

get(↑source, ↑operation, ↑message,
timeout)

PS publish(broker, filter, event, lease) post(broker, filter, event, lease)
retrieve(↑broker, ↑filter, ↑event,
timeout)

get(↑broker, ↑filter, ↑event, timeout)

TS out(tspace, template, tuple, lease) post(tspace, template, tuple, lease)
take(↑tspace, ↑template, ↑tuple,
timeout)

get(↑tspace, ↑template, ↑tuple, timeout)

read(↑tspace, ↑template, ↑tuple,
timeout)

get(↑tspace, ↑template, ↑tuple, timeout)

1
http://xsb.inria.fr/

2S. S. Lam, “Protocol Conversion”, IEEE Trans. on Software Engineering, v. 14, n. 3, 1988.
6

http://xsb.inria.fr/

XSB Model
eXtensible Service Bus (XSB) Middleware Connector1

Primitives Arguments
post mainscope, subscope, data, lease
get ↑mainscope, ↑subscope, ↑data, timeout

Functional and non-functional (timed) behavior of CS|PS|TS
interactions 2

Native Primitives XSB Primitives
CS send(destination, operation, message) post(destination, operation, message,

lease(0))
receive(↑source, ↑operation,
↑message, timeout)

get(↑source, ↑operation, ↑message,
timeout)

PS publish(broker, filter, event, lease) post(broker, filter, event, lease)
retrieve(↑broker, ↑filter, ↑event,
timeout)

get(↑broker, ↑filter, ↑event, timeout)

TS out(tspace, template, tuple, lease) post(tspace, template, tuple, lease)
take(↑tspace, ↑template, ↑tuple,
timeout)

get(↑tspace, ↑template, ↑tuple, timeout)

read(↑tspace, ↑template, ↑tuple,
timeout)

get(↑tspace, ↑template, ↑tuple, timeout)

1
http://xsb.inria.fr/

2S. S. Lam, “Protocol Conversion”, IEEE Trans. on Software Engineering, v. 14, n. 3, 1988.
6

http://xsb.inria.fr/

XSB Model

Operations with active and inactive time interval constraints
1 lease: max active interval for post (data validity)
2 timeout: invariant active interval for get (subscriber

availability)
3 lease ≈ 0 for CS (tight time coupling)

Models time-correlation between post and get operations for
forming end-to-end XSB transactions (CS↔PS↔TS)3

Data processing, transmission and queueing times assumed
negligible compared to lease/timeout intervals

This corresponds to a G/G/∞/∞ queueing model

3A. Kattepur, N. Georgantas & V. Issarny, “QoS Analysis in Heterogeneous Choreography Interactions”,
ICSOC, 2013.

7

XSB Model

Operations with active and inactive time interval constraints
1 lease: max active interval for post (data validity)
2 timeout: invariant active interval for get (subscriber

availability)
3 lease ≈ 0 for CS (tight time coupling)

Models time-correlation between post and get operations for
forming end-to-end XSB transactions (CS↔PS↔TS)3

Data processing, transmission and queueing times assumed
negligible compared to lease/timeout intervals

This corresponds to a G/G/∞/∞ queueing model

3A. Kattepur, N. Georgantas & V. Issarny, “QoS Analysis in Heterogeneous Choreography Interactions”,
ICSOC, 2013.

7

Outline

1 eXtensible Service Bus (XSB)

2 Timing Analysis

3 Timed Automata and Uppaal

4 Experimental Results

5 Conclusions

8

XSB Timing Model

t post t'post t''post

tget gett'δget

δ post δ ' post

timeout

lease lease lease

timeout

time

time

9

XSB Timing Model

Disjunctive conditions for Transaction Success:
1 If post occurs first (data posted):

tpost < tget < tpost + lease (1)

get occurs before lease – transaction successful, or
lease is reached – transaction is a failure

2 If get occurs first (subscriber connected):

tget < tpost < tget + timeout (2)

post occurs before timeout – transaction successful, or
timeout is reached – get operation yields no transaction

Represents individual CS|PS|TS interactions and
heterogeneous interconnections between them

10

XSB Timing Model

Disjunctive conditions for Transaction Success:
1 If post occurs first (data posted):

tpost < tget < tpost + lease (1)

get occurs before lease – transaction successful, or
lease is reached – transaction is a failure

2 If get occurs first (subscriber connected):

tget < tpost < tget + timeout (2)

post occurs before timeout – transaction successful, or
timeout is reached – get operation yields no transaction

Represents individual CS|PS|TS interactions and
heterogeneous interconnections between them

10

XSB Timing Model

Disjunctive conditions for Transaction Success:
1 If post occurs first (data posted):

tpost < tget < tpost + lease (1)

get occurs before lease – transaction successful, or
lease is reached – transaction is a failure

2 If get occurs first (subscriber connected):

tget < tpost < tget + timeout (2)

post occurs before timeout – transaction successful, or
timeout is reached – get operation yields no transaction

Represents individual CS|PS|TS interactions and
heterogeneous interconnections between them

10

Outline

1 eXtensible Service Bus (XSB)

2 Timing Analysis

3 Timed Automata and Uppaal

4 Experimental Results

5 Conclusions

11

Timed Automata Model

A timed automaton4 is a finite automaton extended with
real-valued clock variables.

Clocks used to control post and get operations with active
and inactive intervals

Formal model on Uppaal5 allows verification

Two role automata Poster/Getter interact via the Glue
automaton

c! (sending action) synchronizes with the transition of
another automaton labeled with c? (receiving action)

4R. Alur and D. L. Dill, “A Theory of Timed Automata”, Theoretical Computer Science, 1994.
5G. Behrmann, A. David, and K. G. Larsen, “A tutorial on Uppaal4.0”, Aalborg University, Denmark, 2006.

12

Poster - Timed Automata Model

post_end_event

post_init

post_event

post_on

post_off
delta_post <= max_delta_post

delta_post := lease
post_end ?delta_post := lease

post !
delta_post := 0

13

Poster - Timed Automata Model

post_end_event

post_init

post_event

post_on

post_off
delta_post <= max_delta_post

delta_post := lease
post_end ?delta_post := lease

post !
delta_post := 0

Uniform distribution of inactive post intervals

Disallows concurrent active posts via Glue feedback

Arrival process for one of the infinite on-demand servers of
G/G/∞/∞ model

14

Getter - Timed Automata Model

get_end_event

get_init

get_event

no_trans

get_on
delta_get <= timeout

get_off
delta_get <= max_delta_get

get_ret == 0

get_ret == 1

delta_get >= timeout
get_end !

delta_get := timeout

get !
get_ret := 0, delta_get :=0

delta_get <= timeout
get_return ?
get_ret := 1

15

Getter - Timed Automata Model

get_end_event

get_init

get_event

no_trans

get_on
delta_get <= timeout

get_off
delta_get <= max_delta_get

get_ret == 0

get_ret == 1

delta_get >= timeout
get_end !

delta_get := timeout

get !
get_ret := 0, delta_get :=0

delta_get <= timeout
get_return ?
get_ret := 1

Uniform distribution of inactive get intervals

Controls active get intervals with a constant timeout

Multiple posts may be received during an active interval

Detects when no transaction is concluded (no_trans event)

16

Glue - Timed Automata Model

trans_fail

trans_succ

glue_post
delta_post_on <= leaseglue_get_postglue_getglue_init

post_end ! delta_post_on >= lease

post_end ! get_return !

delta_post_on <= lease
get ?

post ?
delta_post_on := 0

get_end ?

post ?
delta_post_on := 0get ?

17

Glue - Timed Automata Model

trans_fail

trans_succ

glue_post
delta_post_on <= leaseglue_get_postglue_getglue_init

post_end ! delta_post_on >= lease

post_end ! get_return !

delta_post_on <= lease
get ?

post ?
delta_post_on := 0

get_end ?

post ?
delta_post_on := 0get ?

Controls max active post intervals with a constant lease
lifetime

Synchronizes between concurrent post and get operations

Detects when synchronization is successful, with the
trans_succ and trans_fail events

18

Verification
Reachability (E<>ϕ) and Safety (A[]ϕ) properties verified

Successful transaction (overlap in time between active post
and active get)

A[] glue.trans_succ imply (poster.post_on and getter.get_on

and (delta_post==0 or delta_get==0))
(3)

Failed transaction (ongoing inactive get interval entirely
includes a terminating active post interval)

A[] glue.trans_fail imply (poster.post_on and getter.get_off

and delta_post==lease and delta_get-timeout>=lease)
(4)

No transaction concluded (ongoing inactive post interval
entirely includes a terminating active get interval)

A[] getter.no_trans imply (getter.get_on and poster.post_off

and delta_get==timeout and delta_post-lease>=timeout)
(5)

19

Verification
Reachability (E<>ϕ) and Safety (A[]ϕ) properties verified

Successful transaction (overlap in time between active post
and active get)

A[] glue.trans_succ imply (poster.post_on and getter.get_on

and (delta_post==0 or delta_get==0))
(3)

Failed transaction (ongoing inactive get interval entirely
includes a terminating active post interval)

A[] glue.trans_fail imply (poster.post_on and getter.get_off

and delta_post==lease and delta_get-timeout>=lease)
(4)

No transaction concluded (ongoing inactive post interval
entirely includes a terminating active get interval)

A[] getter.no_trans imply (getter.get_on and poster.post_off

and delta_get==timeout and delta_post-lease>=timeout)
(5)

19

Verification
Reachability (E<>ϕ) and Safety (A[]ϕ) properties verified

Successful transaction (overlap in time between active post
and active get)

A[] glue.trans_succ imply (poster.post_on and getter.get_on

and (delta_post==0 or delta_get==0))
(3)

Failed transaction (ongoing inactive get interval entirely
includes a terminating active post interval)

A[] glue.trans_fail imply (poster.post_on and getter.get_off

and delta_post==lease and delta_get-timeout>=lease)
(4)

No transaction concluded (ongoing inactive post interval
entirely includes a terminating active get interval)

A[] getter.no_trans imply (getter.get_on and poster.post_off

and delta_get==timeout and delta_post-lease>=timeout)
(5)

19

Verification
Reachability (E<>ϕ) and Safety (A[]ϕ) properties verified

Successful transaction (overlap in time between active post
and active get)

A[] glue.trans_succ imply (poster.post_on and getter.get_on

and (delta_post==0 or delta_get==0))
(3)

Failed transaction (ongoing inactive get interval entirely
includes a terminating active post interval)

A[] glue.trans_fail imply (poster.post_on and getter.get_off

and delta_post==lease and delta_get-timeout>=lease)
(4)

No transaction concluded (ongoing inactive post interval
entirely includes a terminating active get interval)

A[] getter.no_trans imply (getter.get_on and poster.post_off

and delta_get==timeout and delta_post-lease>=timeout)
(5)

19

Verification

Successful transactions – durations and relative positions of
active/inactive post and get

Dependence on deterministic parameters lease, timeout and
stochastic intervals δpost (on/off), δget (on/off)

General formal conditions for successful XSB transactions –
potentially tunable system parameters

We perform experiments to quantify the effect of varying
these parameters for successful transactions

20

Outline

1 eXtensible Service Bus (XSB)

2 Timing Analysis

3 Timed Automata and Uppaal

4 Experimental Results

5 Conclusions

21

Statistical Simulation: Transaction Success Rates

Test the effect of varying lease and timeout periods on
transaction success rates

Exponential distributions for intervals between successive
post operations (δpost) and successive get operations (δget)

No queueing effects included in the model

This simulates an M/G/∞/∞ queueing model

Simulation run for 10, 000 get operations to collect
transaction statistics – transaction success conditions from
formal analysis

22

Statistical Simulation: Transaction Success Rates

Increasing timeout periods for individual lease values
improves the success rate

Success Rate is severely bounded by lease periods – evident
in the CS case

23

Statistical Simulation: Latency vs. Success Rate

Trade-off between end-to-end latency and transaction success
rate

Cumulative latency distributions for transactions

All failed transactions are pegged to the max value lease

Guidelines for system designers to set the lease and timeout
periods for successful transactions with acceptable latency

24

Statistical Simulation: Latency vs. Success Rate

Lower lease periods (e.g., CS case) produce markedly
improved latency, however, with lower success rate

With higher levels of lease periods (typically PS/TS), we
notice high success rates, but also higher latency

25

Experimental Comparison: XSB Implementation

Two middleware experimental setups:
lease = 0 transactions, experiment with the DPWS6 CS
middleware
lease > 0 transactions, experiment with the JMS7 PS
middleware

Includes concurrent posts and queueing (queueing delays are
negligible)

This corresponds to an M/G/1/∞ queueing model

Each experiment run for at least 2 hours to ensure close
statistical samples for δpost and δget distributions

6
http://ws4d.e-technik.uni-rostock.de/jmeds

7
http://activemq.apache.org

26

http://ws4d.e-technik.uni-rostock.de/jmeds
http://activemq.apache.org

Experimental Comparison: XSB Implementation

lease (s) δget (s) Simulation Measurement
0 exponential(20) 0.65 0.717
0 exponential(40) 0.35 0.42
10 exponential(20) 0.75 0.778
10 exponential(40) 0.48 0.554
40 exponential(20) 0.93 0.91
40 exponential(40) 0.75 0.81

Success Rate Comparison

Compare the results of simulated and measured success rates

Absolute deviation between the two is no more than 10%

Deviation may be due to network delays, buffering at each
entity (poster, getter, intermediate entity)

Designers can rely on our simulation model for tuning their
system parameters

27

Outline

1 eXtensible Service Bus (XSB)

2 Timing Analysis

3 Timed Automata and Uppaal

4 Experimental Results

5 Conclusions

28

Conclusions

Crowd sourced
 Information

Mobile Subscribers Connect/Disconnect

Traffic Cameras Google “real time” traffic

post post post

get get get

What is the current traffic congestion on Mahatma Gandhi Road ?

(lease)

(timeout)

Storage with limited validity “latest report”

lease=10 seconds, timeout=10 seconds:
Success Rate 65% and Latency within 8 sec. (P = 0.63)

lease=10 seconds, timeout=20 seconds:
Success Rate 80% and Latency within 4 sec. (P = 0.77)

29

Conclusions

Unified timing analysis across heterogeneous middleware
paradigms using XSB

Demonstrated the effect of varying lease and timeout
periods on success rates/latency

By leveraging the timing analysis, designers can accurately set
constraints to ensure high success rates for transactions

Included stochastic behavior without more sophisticated
formal notations (probabilistic timed automata) - future work

30

Thank you

31

	eXtensible Service Bus (XSB)
	Timing Analysis
	Timed Automata and Uppaal
	Experimental Results
	Conclusions

