Performance Modeling of the Middleware Overlay Infrastructure of Mobile Things

> **Georgios Bouloukakis**¹, Ioannis Moscholios², Nikolaos Georgantas¹ & Valérie Issarny¹

> > Paris, France, May 2017

IEEE International Conference on Communications (ICC)

¹MiMove team, Inria Paris, France ²University of Peloponnese, Tripolis, Greece Middleware on the Move

Middleware Protocols in the IoT

• Devices and protocols:

DPWS	CoAP	MQT	Γ Ζε	eroMQ	XMPP	••••
Stream	ing	Async	Sync	Pub/	Sub	••••

IoT Interactions across Multiple Layers

- Things interact with each other by relying on the middleware-layer protocols
- Things may receive data on a voluntary basis (e.g., to save energy)
 - app-layer disconnections
- Each (IP-based) protocol implements its own QoS features on top of UDP/TCP
- Protocols deal with network issues (e.g., wireless disconnections)

- mdw-layer disconnections

• Data are routed through the physical network, which consists of physical routers and links

Middleware-layer Performance Modeling

• We model a middleware node using simple input and output queues:

- An input queue is used to represent the processing of received data
- An output queue is used to represent the transmission of data
- The service rate of output queues model the network transmission delay

nnia

Middleware Model for Mobile peers

2-D Markov chain:

solving the global balance equations

 $T_{\rm on/off} = \frac{E(n)_{\rm on/off}}{1}$ $E(n)_{on/off} \approx \frac{\rho^{'} + \rho_{\rm OFF} P_{\rm server}(OFF)}{1 - \rho^{'}}$

JEE

Performance Model for Streaming Interactions

Data Streaming (DS) Communication Style:

Performance model (reliable) for DS:

Innia

Evaluation Results

> JINQS:

- open source simulator for Queueing Network Models
- We extend JINQS and we have developed MobileJINQS¹:
- > We validate the ON/OFF queueing center through:
 - probability distributions for arrival rates and ON/OFF connectivity
 - arrival rates using the D4D dataset²
 - ON/OFF connectivity traces collected in the metro of Paris²
- Simulate and validate end-to-end response times in DS

¹ http://xsb.inria.fr/d4d#mobilejinqs

ON/OFF queueing center validation: Estimated vs. Simulated Response Time

End-to-end Response Times in DS

- App-layer disconnections:
 - T_{ON} = 1 min
 - T_{OFF} = 10 min

- Mdw-layer disconnections¹:
 - T_{ON} = 4.8 min
 - T_{OFF} = 1.3 min

¹ G. Bouloukakis et al., Toward Enabling Convenient Urban Transit through Mobile Crowdsensing, IEEE International Conference on Intelligent Transportation Systems, 2015.

Next steps

- > Future work:
 - Apply lifetime periods to each published event.
 - Deal with unreliable infrastructures for middleware Internet of Things protocols.
 - Introduce models that evaluate the interoperability effectiveness of Things employing heterogeneous protocols.

Innia

Thank you

